1
|
Benavides PA, Gordillo MA, Thibodeaux E, Yadav A, Johnson E, Sachdeva R, Saha S. Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1234-1242. [PMID: 38108279 DOI: 10.1021/acsami.3c15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Charge-transfer (CT) interactions between co-facially aligned π-donor/acceptor (π-D/A) arrays engender unique optical and electronic properties that could benefit (supra)molecular electronics and energy technologies. Herein, we demonstrate that a tetragonal prismatic metal-organic cage (MOC18+) having two parallel π-donor tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces selectively intercalate planar π-acceptor guests, such as hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyanotriphenylene (HCTP), and napthanelediimide (NDI) derivatives, forming 1:1 πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads. The π-acidity of intercalated π-acceptors (HATHCN ≫ HCTP ≈ NDIs) dictated the nature and strength of their interactions with the ZnTCPP faces, which in turn influenced the binding affinities (Ka) and optical and electronic properties of corresponding πA@MOC18+ inclusion complexes. Owing to its strongest CT interaction with ZnTCPP faces, the most π-acidic HATHCN guest enjoyed the largest Ka (5 × 106 M-1), competitively displaced weaker π-acceptors from the MOC18+ cavity, and generated the highest electrical conductivity (2.1 × 10-6 S/m) among the πA@MOC18+ inclusion complexes. This work demonstrates a unique through-space charge transport capability of πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads, which generated tunable electrical conductivity, which is a rare but much coveted electronic property of such supramolecular assemblies that could further expand their utility in future technologies.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Monica A Gordillo
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Thibodeaux
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Ashok Yadav
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Johnson
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Moree LK, Faulkner LAV, Crowley JD. Heterometallic cages: synthesis and applications. Chem Soc Rev 2024; 53:25-46. [PMID: 38037385 DOI: 10.1039/d3cs00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
High symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis and drug delivery. Recently there have been increasing efforts to enhance those applications by generating reduced symmetry MSAs. While there are several emerging methods for generating lower symmetry MSAs, this tutorial review examines the general methods used for synthesizing heterometallic MSAs with a particular focus on heterometallic cages. Additionally, the intrinsic properties of the cages and their potential emerging applications as host-guest systems and reaction catalysts are described.
Collapse
Affiliation(s)
- Lana K Moree
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Logan A V Faulkner
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Silva RC, Buzzá HH, Ducas ESA, Oliveira KT, Bagnato VS, Souza GRL, Almeida LM, Gonçalves PJ. Synergic vascular photodynamic activity by methylene blue-curcumin supramolecular assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123281. [PMID: 37625276 DOI: 10.1016/j.saa.2023.123281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
A supramolecular assembly was obtained by combining methylene blue (MB) with a natural plant extract, curcumin (Curc), in a stoichiometric ratio of 1:4 in aqueous solution (90% PBS + 10% ethanol) at room temperature. The MB-Curc supramolecular assembly was evidenced by absorption and fluorescence spectroscopies, and the stoichiometry and bonding constant were obtained using Cieleńs model. Its stability and photostability were evaluated by chromatographic analysis and UV-Vis absorption. The MB-Curc avoids the aggregation of both isolated compounds and efficiently produces singlet oxygen (ΦΔ= 0.52 ± 0.03). Its potential for photodynamic antiangiogenic treatments was evaluated through the vascular effect observed in chicken chorioallantoic membrane (CAM) assay. The results showed intense damage in CAM vascular network by MB-Curc after irradiation, which is higher than the effect of isolated compounds, indicating a synergistic vascular effect. This combination can be essential to prevent cancer revascularization after photodynamic application and improve the efficacy of this approach. The characteristics exhibited by MB-Curc make it a potential candidate for use in cancer treatments through photodynamic antiangiogenic therapy.
Collapse
Affiliation(s)
- Rodrigo C Silva
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - Hilde H Buzzá
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eli S A Ducas
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kleber T Oliveira
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Hagler Fellow, Texas A&M University, College Station, United States
| | - Guilherme R L Souza
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Luciane M Almeida
- Universidade Estadual de Goiás (UEG), Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis, GO, Brazil
| | - Pablo J Gonçalves
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Preston D, Evans JD. A Lantern-Shaped Pd(II) Cage Constructed from Four Different Low-Symmetry Ligands with Positional and Orientational Control: An Ancillary Pairings Approach. Angew Chem Int Ed Engl 2023; 62:e202314378. [PMID: 37816684 DOI: 10.1002/anie.202314378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.
Collapse
Affiliation(s)
- Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Jack D Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
6
|
Pfrunder MC, Marshall DL, Poad BLJ, Stovell EG, Loomans BI, Blinco JP, Blanksby SJ, McMurtrie JC, Mullen KM. Exploring the Gas-Phase Formation and Chemical Reactivity of Highly Reduced M 8 L 6 Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202212710. [PMID: 36102176 PMCID: PMC9827999 DOI: 10.1002/anie.202212710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.
Collapse
Affiliation(s)
- Michael C. Pfrunder
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - David L. Marshall
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Berwyck L. J. Poad
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Ethan G. Stovell
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin I. Loomans
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - James P. Blinco
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Stephen J. Blanksby
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - John C. McMurtrie
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Kathleen M. Mullen
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| |
Collapse
|
7
|
Benavides PA, Gordillo MA, Yadav A, Joaqui-Joaqui MA, Saha S. Pt(ii)-coordinated tricomponent self-assemblies of tetrapyridyl porphyrin and dicarboxylate ligands: are they 3D prisms or 2D bow-ties? Chem Sci 2022; 13:4070-4081. [PMID: 35440981 PMCID: PMC8985580 DOI: 10.1039/d1sc06533e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Thermodynamically favored simultaneous coordination of Pt(ii) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure-function relationships. Previous reports claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(ii) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidities actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP) (XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (∼7-11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) bow-tie complexes are entropically favored over prisms. The electron-rich ZnTPP core of a representative bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor such as pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure-property relationships.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Monica A Gordillo
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Ashok Yadav
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | | | - Sourav Saha
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
8
|
Findlay J, Patil K, Gardiner M, MacDermott-Opeskin H, O'mAra M, Kruger P, Preston D. Heteroleptic tripalladium(II) cages. Chem Asian J 2022; 17:e202200093. [PMID: 35139260 DOI: 10.1002/asia.202200093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/08/2022] [Indexed: 11/08/2022]
Abstract
There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic Pd II cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2:3:3 combination of a tritopic ligand, Pd II , and a selection of ditopic ligands of the correct size and geometry.
Collapse
Affiliation(s)
- James Findlay
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Komal Patil
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Michael Gardiner
- Australian National University, Research School of Chemistry, AUSTRALIA
| | | | - Megan O'mAra
- Australian National University, Research School of Chemistry, AUSTRALIA
| | - Paul Kruger
- University of Canterbury, School of Physical and Chemical Sciences, NEW ZEALAND
| | - Dan Preston
- Australian National University, Research School of Chemistry, Building 137, Sullivan Creek Road, 26010, Australia, 9200, Canberra, AUSTRALIA
| |
Collapse
|
9
|
Li L, Yang L, Li X, Wang J, Liu X, He C. Supramolecular Catalysis of Acyl Transfer within Zinc Porphyrin-Based Metal-Organic Cages. Inorg Chem 2021; 60:8802-8810. [PMID: 34085514 DOI: 10.1021/acs.inorgchem.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To illustrate the supramolecular catalysis process in molecular containers, two porphyrinatozinc(II)-faced cubic cages with different sizes were synthesized and used to catalyze acyl-transfer reactions between N-acetylimidazole (NAI) and various pyridylcarbinol (PC) regioisomers (2-PC, 3-PC, and 4-PC). A systemic investigation of the supramolecular catalysis occurring within these two hosts was performed, in combination with a host-guest binding study and density functional theory calculations. Compared to the reaction in a bulk solvent, the results that the reaction of 2-PC was found to be highly efficient with high rate enhancements (kcat/kuncat = 283 for Zn-1 and 442 for Zn-2), as well as the different efficiencies of the reactions with various ortho-substituted 2-PC substrates and NAI derivates should be attributed to the cages having preconcentrated and preoriented substrates. The same cage displayed different catalytic activities toward different PC regioisomers, which should be mainly attributed to different binding affinities between the respective reactant and product with the cages. Furthermore, control experiments were carried out to learn the effect of varying reactant concentrations and product inhibition. The results all suggested that, besides the confinement effect caused by the inner microenvironment, substrate transfer, including the encapsulation of the reactant and the release of products, should be considered to be a quite important factor in supramolecular catalysis within a molecular container.
Collapse
Affiliation(s)
- LiLi Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Xin Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| |
Collapse
|
10
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Coal-Tar Dye-based Coordination Cages and Helicates. Angew Chem Int Ed Engl 2021; 60:5673-5678. [PMID: 33245206 PMCID: PMC7986857 DOI: 10.1002/anie.202015246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 02/07/2023]
Abstract
A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.
Collapse
Affiliation(s)
- Irene Regeni
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Bin Chen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current Address: State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhou215123China
| | - Marina Frank
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Ananya Baksi
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
11
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Teerfarben‐basierte Koordinationskäfige und ‐helikate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irene Regeni
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Bin Chen
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
- Derzeitige Adresse: State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Soochow University Suzhou 215123 China
| | - Marina Frank
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
12
|
Hardy M, Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chemistry 2020; 26:13332-13346. [PMID: 32297380 PMCID: PMC7693062 DOI: 10.1002/chem.202001602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host‐systems or as magnetic, photo‐active, redox‐active, and even catalytically active materials.
Collapse
Affiliation(s)
- Matthias Hardy
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| |
Collapse
|
13
|
Lagesse NR, Tan KYL, Crowley JD, Findlay JA. Planar 2‐Pyridyl‐1,2,3‐triazole Derived Metallo‐ligands: Self‐assembly with PdCl2and Photocatalysis. Chem Asian J 2020; 15:1567-1573. [DOI: 10.1002/asia.202000284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Natalie R. Lagesse
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - Kelvin Y. L. Tan
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
14
|
Xu W, Qi Y, Zhou K, Wang Z, Wang G, He G, Fang Y. A new spirofluorene-based nonplanar PBI-dyad and its utilization in the film-based photo-production of singlet oxygen. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9676-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Preston D, Kruger PE. Using Complementary Ligand Denticity to Direct Metallosupramolecular Structure about Metal Ions with Square‐Planar Geometry. Chempluschem 2020; 85:454-465. [DOI: 10.1002/cplu.202000019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| |
Collapse
|
16
|
Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213165] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Kolien J, Inglis AR, Vasdev RAS, Howard BI, Kruger PE, Preston D. Exploiting the labile site in dinuclear [Pd2L2]n+ metallo-cycles: multi-step control over binding affinity without alteration of core host structure. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00901f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic metallosupramolecular systems have generally been binary (on/off) when they have control over molecular recognition. This report details a dipalladium(ii) system with four-step graduated control over recognition for a guest.
Collapse
Affiliation(s)
- James Kolien
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Amanda R. Inglis
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | | | - Ben I. Howard
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
19
|
Preston D, Patil KM, O'Neil AT, Vasdev RAS, Kitchen JA, Kruger PE. Long-cavity [Pd2L4]4+ cages and designer 1,8-naphthalimide sulfonate guests: rich variation in affinity and differentiated binding stoichiometry. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00658k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long cavity dual domain [Pd2L4]4+ cages bind long, dual domain guests, with tunable binding affinities and stoichiometries.
Collapse
Affiliation(s)
- Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Komal M. Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Alex T. O'Neil
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | | | - Jonathan A. Kitchen
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
20
|
Preston D, Findlay JA, Crowley JD. Recognition Properties and Self‐assembly of Planar [M(2‐pyridyl‐1,2,3‐triazole)2]2+Metallo‐ligands. Chem Asian J 2018; 14:1136-1142. [DOI: 10.1002/asia.201801132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Preston
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
21
|
Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem Soc Rev 2018; 47:5614-5645. [DOI: 10.1039/c8cs00035b] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tetrathiafulvalene- (TTF-) based macrocyclic systems, cages and supramolecularly self-assembled 3D constructs have been extensively explored as functional materials for sensing and switching applications.
Collapse
Affiliation(s)
- Atanu Jana
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
| | - Steffen Bähring
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry
- Graduate School of Engineering and Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Sébastien Goeb
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - David Canevet
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Marc Sallé
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Jan O. Jeppesen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Jonathan L. Sessler
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
- Department of Chemistry
| |
Collapse
|