1
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210:114330. [PMID: 35567882 DOI: 10.1016/j.bios.2022.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Numerous polymeric agents have been widely applied in biology and medicine by virtue of the facile chemical modification, feasible nano-engineering approaches and fine-tuned pharmacokinetics. To endow polymeric imaging agents with ability to monitor and measure subtle molecular or cellular alterations at diseased sites, activatable polymeric probes that can elicit signal changes in response to biomolecular interactions or the analytes of interest have to be developed. Herein, this review aims to provide a systemic interpretation and summarization of the design methodology and imaging utility of recently emerged activatable polymeric probes. An introduction of activatable probes allowing for precise imaging and classification of polymeric imaging agents is reported first. Then, we give a detailed discussion of the contemporary design approaches toward activatable polymeric probes in diverse imaging modes for the detection of various stimuli and their imaging applications. Finally, current challenges and future advances are discussed and highlighted.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
4
|
Zhou W, He X, Wang J, He S, Xie C, Fan Q, Pu K. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules 2022; 23:1490-1504. [PMID: 35286085 DOI: 10.1021/acs.biomac.2c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy that stimulates the body's own immune system to kill cancer cells has emerged as a promising cancer therapeutic method. However, some types of cancer exhibited a low response rate to immunotherapy, and the high risk of immune-related side effects has been aroused during immunotherapy, which greatly restrict its broad applications in cancer therapy. Phototherapy that uses external light to trigger the therapeutic process holds advantages including high selectivity and efficiency, and low side effects. Recently, it has been proven to be able to stimulate immune response in the tumor region by inducing immunogenic cell death (ICD), the process of which was termed photo-immunotherapy, dramatically improving therapeutic specificity over conventional immunotherapy in several aspects. Among numerous optical materials for photo-immunotherapy, semiconducting polymer nanoparticles (SPNs) have gained more and more attention owing to their excellent optical properties and good biocompatibility. In this review, we summarize recent developments of SPNs for immunotherapy and imaging of immunoactivation. Different therapeutic modalities triggered by SPNs including photo-immunotherapy and photo-immunometabolic therapy are first introduced. Then, applications of SPNs for real-time monitoring immunoactivation are discussed. Finally, the conclusion and future perspectives of this research field are given.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinghui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
5
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
6
|
Zhang X, An L, Tian Q, Lin J, Yang S. Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. J Mater Chem B 2021; 8:4738-4747. [PMID: 32124909 DOI: 10.1039/d0tb00030b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) absorption and fluorescent agents have attracted great attention because they can overcome the penetration limitation of the first near-infrared window (NIR-I, 750-1000 nm). However, these always "on" agents face the severe problem of being susceptible to retention and phagocytosis by the reticuloendothelial system after intravenous administration, which results in signal interference during diagnosis and side effects during treatment. Accordingly, tumor microenvironment-responsive smart agents (smart NIR-II agents), whose imaging and therapeutic functions can only be triggered in tumors, can overcome this limitation. Thus, NIR-II smart agents, which exhibit a combined response to the tumor microenvironment and NIR-II, make full use of the advantages of both triggers and improve the precision diagnosis and effective treatment of cancer. This review summarizes the recent advances in tumor microenvironment-activated NIR-II agents for tumor diagnosis and treatment, including smart NIR-II fluorescence imaging, photoacoustic imaging, photothermal therapy and photodynamic therapy. Finally, the challenges and perspectives of NIR-II smart agents for tumor diagnosis and treatment are proposed.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. MATERIALS HORIZONS 2020; 7:1474-1494. [PMID: 33777400 PMCID: PMC7990392 DOI: 10.1039/d0mh00012d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Huang J, Pu K. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020; 59:11717-11731. [PMID: 32134156 DOI: 10.1002/anie.202001783] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
9
|
Huang J, Pu K. Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001783] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
10
|
Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chem Sci 2019; 11:618-630. [PMID: 34123034 PMCID: PMC8145638 DOI: 10.1039/c9sc05460j] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Theranostics that integrates diagnosis and treatment modalities has attracted great attention due to its abilities of personalized therapy and real-time monitoring of therapeutic outcome. Such a theranostic paradigm requires agents to simultaneously possess the capabilities of targeting, imaging, and treatment. Activatable molecular agents (AMAs) are promising for cancer theranostics, as they show a higher signal-to-noise ratio (SNR), real-time detection of cancer-associated biomarkers, lower normal tissue toxicity, and a higher therapeutic effect. This perspective summarizes the recent advancements of AMAs, which include imaging-guided chemotherapy, imaging-guided photodynamic therapy, and imaging-guided photothermal therapy. The molecular design principles, theranostic mechanisms, and biomedical applications of AMAs are described, followed by a discussion of potential challenges of AMAs in cancer theranostics.
Collapse
Affiliation(s)
- Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University Xi'an 710127 Shaanxi P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology Xi'an 710021 P. R. China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
11
|
Dai C, Wang C, Hu R, Lin H, Liu Z, Yu L, Chen Y, Zhang B. Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials 2019; 219:119374. [PMID: 31369897 DOI: 10.1016/j.biomaterials.2019.119374] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
Traditional cancer-therapeutic modalities such as chemotherapy suffer from the low therapeutic efficiency and severe side effects. The emerging nanocatalytic therapy could in-situ catalyze the endogenous substances into highly toxic species and then efficiently kill the cancer cells, but the lack of high-performance nanocatalysts hinders their broad clinical translation. In this work, we have successfully developed, for the first time, nanosized zero-valence crystalized iron nanoparticles for in-situ triggering nanocatalytic Fenton reaction within tumor microenvironment to produce large amounts of hydroxyl radicals and subsequently kill the cancer cells, which could be further synergistically enhanced by either photonic hyperthermia or magnetic hyperthermia as assisted by these iron nanoparticles acting as photothermal-conversion or magnetothermal-conversion nanoagents, respectively. Especially, the excellent magnetic performance of these zero-valence crystallized iron nanoparticles has achieved both in vitro and in vivo contrast-enhance magnetic resonance imaging for potentially guiding the photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy. This work not only provides the new type of iron-based nanoparticles for biomedical application, but also demonstrates the high efficiency of nanocatalytic cancer therapy as assisted by both photonic and magnetic hyperthermia.
Collapse
Affiliation(s)
- Chen Dai
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai, 200120, People's Republic of China
| | - Ruizhi Hu
- Department of Ultrasound in Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Han Lin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Luodan Yu
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Bo Zhang
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
12
|
Gao D, Zhang B, Liu Y, Hu D, Sheng Z, Zhang X, Yuan Z. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics 2019; 9:5315-5331. [PMID: 31410217 PMCID: PMC6691584 DOI: 10.7150/thno.34418] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Engineering a single organic-molecule-based nanoparticle integrating precise diagnosis and effective therapy is of great significance for cancer treatment and future clinical applications but remains a great challenge. The goal of this study is to explore small organic molecule-based nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided therapy. Methods: Heptacyclic B, O-chelated BODIPY structure (namely Boca-BODIPY) with strong near-infrared (NIR) absorption was designed as a theranostic agent through simply molecular engineering, in which heavy atoms and alkyl chains were introduced to promote its application for tumor theranostics. The Boca-BODIPY molecules are further encapsulated in reduced bovine serum albumin (BSA) through self-assembly. Results: The BSA-Boca-BODIPY exhibited excellent biocompatibility, extraordinary stability and high photothermal conversion efficiency up to 58.7%. The nanoparticles could dramatically enhance photoacoustic contrast of the tumor region, and the signal-to-noise ratio was increased about 14 times at 10 h post intravenous injection in 4T1 tumor-bearing mice. In addition, the nanoassemblies can efficiently convert laser energy (808 nm, 0.75 w cm-2, 5min) into hyperthermia for tumor ablation. Under the photoacoustic imaging-guided photothermal therapy (PTT), the 4T1 cancer cells were efficiently killed, no tumor recurrence and PTT-induced toxicity is observed. Conclusions: Molecular engineering is a promising way to design organic-molecule-based nanoparticles for cancer theranostics. Other organic-molecule-based nanoparticles which show great promise for imaging-guided cancer precision therapy can be engineered through this method.
Collapse
Affiliation(s)
- Duyang Gao
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Boyu Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section LvShun South Road, Dalian 116044, P. R. China
| | - Yubin Liu
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
| |
Collapse
|
13
|
Laramie MD, Smith MK, Marmarchi F, McNally LR, Henary M. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules 2018; 23:E2766. [PMID: 30366395 PMCID: PMC6278390 DOI: 10.3390/molecules23112766] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Collapse
Affiliation(s)
- Matt D Laramie
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Mary K Smith
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Fahad Marmarchi
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Lacey R McNally
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Zhang J, Zhen X, Zeng J, Pu K. A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite. Anal Chem 2018; 90:9301-9307. [DOI: 10.1021/acs.analchem.8b01879] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Jianfeng Zeng
- State key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|