1
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Hu J, Hu X, Zeng Z, Zhang J, Li M, Geng F, Wu D. Interaction between a photoisomerizable azobenzene compound and alpha-lactalbumin: Spectroscopic and computational simulation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122965. [PMID: 37327501 DOI: 10.1016/j.saa.2023.122965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
The combination of light and photoresponsive compounds provides a peculiar way of regulating biological systems. Azobenzene is a classical organic compound with photoisomerization properties. Exploring the interactions between azobenzene and proteins can deepen the biochemical applications of the azobenzene compounds. In this paper, the interaction of 4-[(2,6-dimethylphenyl)diazenyl]-3,5-dimethylphenol with alpha-lactalbumin was investigated by UV-Vis absorption spectra, multiple fluorescence spectra, computer simulations, and circular dichroism spectra. Most critically, the interaction differences between proteins and the trans- and cis-isomer of ligands have been analyzed and compared. Results showed that both isomers of ligands were bound to alpha-lactalbumin to form ground state complexes and statically quenched the steady-state fluorescence of alpha-lactalbumin. The van der Waals forces and hydrogen bonding dominated the binding; the difference is that the binding of the cis-isomer to alpha-lactalbumin is more rapidly stabilized, and the binding strength is greater than the trans-isomer. These binding differences were modeled and analyzed by molecular docking and kinetic simulations, and we found that both isomers bind through the hydrophobic aromatic cluster 2 of alpha-lactalbumin. However, the bent structure of the cis-isomer is more closely aligned with the construction of the aromatic cluster and may have contributed to the above differences.
Collapse
Affiliation(s)
- Jie Hu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhen Zeng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jing Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Regier J, Ghanty S, Bolshan Y. Stereoselective Palladium-Catalyzed Arylation of Exo-Glycals with Aryl Iodides. J Org Chem 2021; 87:524-530. [PMID: 34958570 DOI: 10.1021/acs.joc.1c02533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel methodology for the arylation of exo-glycals has been developed. A range of exo-glycals underwent reactions with aryl iodides in the presence of a palladium catalyst. The transformation proceeded in a stereoselective manner to afford Z-isomers. The developed transformation demonstrated excellent functional group tolerance.
Collapse
Affiliation(s)
- Jeffery Regier
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Supriya Ghanty
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Yuri Bolshan
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
4
|
Ramos-Soriano J, Galan MC. Photoresponsive Control of G-Quadruplex DNA Systems. JACS AU 2021; 1:1516-1526. [PMID: 34723256 PMCID: PMC8549047 DOI: 10.1021/jacsau.1c00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 05/14/2023]
Abstract
G-quadruplex (G4) oligonucleotide secondary structures have recently attracted significant attention as therapeutic targets owing to their occurrence in human oncogene promoter sequences and the genome of pathogenic organisms. G4s also demonstrate interesting catalytic activities in their own right, as well as the ability to act as scaffolds for the development of DNA-based materials and nanodevices. Owing to this diverse range of opportunities to exploit G4 in a variety of applications, several strategies to control G4 structure and function have emerged. Interrogating the role of G4s in biology requires the delivery of small-molecule ligands that promote its formation under physiological conditions, while exploiting G4 in the development of responsive nanodevices is normally achieved by the addition and sequestration of the metal ions required for the stabilization of the folded structure. Although these strategies prove successful, neither allows the system in question to be controlled externally. Meanwhile, light has proven to be an attractive means for the control of DNA-based systems as it is noninvasive, can be delivered with high spatiotemporal precision, and is orthogonal to many chemical and biological processes. A plethora of photoresponsive DNA systems have been reported to date; however, the vast majority deploy photoreactive moieties to control the stability and assembly of duplex DNA hybrids. Despite the unique opportunities afforded by the regulation of G-quadruplex formation in biology, catalysis, and nanotechnology, comparatively little attention has been devoted to the design of photoresponsive G4-based systems. In this Perspective, we consider the potential of photoresponsive G4 assemblies and examine the strategies that may be used to engineer these systems toward a variety of applications. Through an overview of the main developments in the field to date, we highlight recent progress made toward this exciting goal and the emerging opportunities that remain ripe for further exploration in the coming years.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Grebenovsky N, Hermanns V, Heckel A. Photoswitchable 2‐Phenyldiazenyl‐Purines and their Influence on DNA Hybridization. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nikolai Grebenovsky
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| | - Volker Hermanns
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| |
Collapse
|
6
|
Hu H, Chen P, Wang G, Wu J, Zhang B, Li W, Davis RL, Li Y. Regulation of Immune Activation by Optical Control of TLR1/2 Heterodimerization. Chembiochem 2020; 21:1150-1154. [DOI: 10.1002/cbic.201900591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Hong‐Guo Hu
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
| | - Pu‐Guang Chen
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
| | - Guanyu Wang
- Department of ChemistryUniversity of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Jun‐Jun Wu
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
| | - Bo‐Dou Zhang
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
| | - Wen‐Hao Li
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
| | - Rebecca L. Davis
- Department of ChemistryUniversity of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Yan‐Mei Li
- Department of ChemistryTsinghua UniversityKey Lab of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing 100084 P. R. China
- Beijing Institute for Brain Disorders Beijing 100069 P. R. China
- Center for Synthetic and Systems BiologyTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
7
|
Grebenovsky N, Luma L, Müller P, Heckel A. Introducing LNAzo: More Rigidity for Improved Photocontrol of Oligonucleotide Hybridization. Chemistry 2019; 25:12298-12302. [PMID: 31386225 DOI: 10.1002/chem.201903240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/05/2019] [Indexed: 12/15/2022]
Abstract
Oligonucleotide-based therapeutics have made rapid progress in clinical treatment of a variety of disease indications. Since most therapeutic oligonucleotides serve more than just one function and tend to have a prolonged lifetime, spatio-temporal control of these functions would be desirable. Photoswitches like azobenzene have proven themselves as useful tools in this matter. Upon irradiation, the photoisomerization of the azobenzene moiety causes destabilization in adjacent base pairs, leading to a decreased hybridization affinity. Since the way the azobenzene is incorporated in the oligonucleotide is of utmost importance, we synthesized locked azobenzene C-nucleosides and compared their photocontrol capabilities to established azobenzene C-nucleosides in oligonucleotide test-sequences by means of fluorescence-, UV/Vis-, and CD-spectroscopy.
Collapse
Affiliation(s)
- Nikolai Grebenovsky
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Larita Luma
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Patricia Müller
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Keyhani S, Goldau T, Blümler A, Heckel A, Schwalbe H. Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for Biophysical Studies including Light Control and NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara Keyhani
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Thomas Goldau
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt am Main; Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| |
Collapse
|
9
|
Keyhani S, Goldau T, Blümler A, Heckel A, Schwalbe H. Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for Biophysical Studies including Light Control and NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:12017-12021. [PMID: 30007102 DOI: 10.1002/anie.201807125] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 02/04/2023]
Abstract
The investigation of non-coding RNAs requires RNAs containing modifications at every possible position within the oligonucleotide. Here, we present the chemo-enzymatic RNA synthesis containing photoactivatable or 13 C,15 N-labelled nucleosides. All four ribonucleotides containing ortho-nitrophenylethyl (NPE) photocages, photoswitchable azobenzene C-nucleotides and 13 C,15 N-labelled nucleotides were incorporated position-specifically in high yields. We applied this approach for the synthesis of light-inducible 2'dG-sensing riboswitch variants and detected ligand-induced structural reorganization upon irradiation by NMR spectroscopy. This chemo-enzymatic method opens the possibility to incorporate a wide range of modifications at any desired position of RNAs of any lengths beyond the limits of solid-phase synthesis.
Collapse
Affiliation(s)
- Sara Keyhani
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany.,Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Thomas Goldau
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany.,Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| |
Collapse
|