1
|
Long A, Oswood CJ, Kelly CB, Bryan MC, MacMillan DWC. Couple-close construction of polycyclic rings from diradicals. Nature 2024; 628:326-332. [PMID: 38480891 PMCID: PMC11487475 DOI: 10.1038/s41586-024-07181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.
Collapse
Affiliation(s)
- Alice Long
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Christopher B Kelly
- Discovery Process Research, Janssen Research and Development LLC, Spring House, PA, USA
| | - Marian C Bryan
- Therapeutics Discovery, Janssen Research and Development LLC, Spring House, PA, USA
| | | |
Collapse
|
2
|
Cao Q, Tibbetts JD, Wrigley GL, Smalley AP, Cresswell AJ. Modular, automated synthesis of spirocyclic tetrahydronaphthyridines from primary alkylamines. Commun Chem 2023; 6:215. [PMID: 37794068 PMCID: PMC10550966 DOI: 10.1038/s42004-023-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Spirocyclic tetrahydronaphthyridines (THNs) are valuable scaffolds for drug discovery campaigns, but access to this 3D chemical space is hampered by a lack of modular and scalable synthetic methods. We hereby report an automated, continuous flow synthesis of α-alkylated and spirocyclic 1,2,3,4-tetrahydro-1,8-naphthyridines ("1,8-THNs"), in addition to their regioisomeric 1,6-THN analogues, from abundant primary amine feedstocks. An annulative disconnection approach based on photoredox-catalysed hydroaminoalkylation (HAA) of halogenated vinylpyridines is sequenced in combination with intramolecular SNAr N-arylation. To access the remaining 1,7- and 1,5-THN isomers, a photoredox-catalysed HAA step is telescoped with a palladium-catalysed C-N bond formation. Altogether, this provides a highly modular access to four isomeric THN cores from a common set of unprotected primary amine starting materials, using the same bond disconnections. The simplifying power of the methodology is illustrated by a concise synthesis of the spirocyclic THN core of Pfizer's MC4R antagonist PF-07258669.
Collapse
Affiliation(s)
- Qiao Cao
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua D Tibbetts
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Gail L Wrigley
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | |
Collapse
|
3
|
Li MM, Huang H, Pu Y, Tian W, Deng Y, Lu J. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur J Med Chem 2022; 243:114739. [PMID: 36126386 DOI: 10.1016/j.ejmech.2022.114739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
The fusion of pyrazole scaffold with other skeletons creates a class of attractive molecules, demonstrating significant biological and chemical potentiality in the development of medicinal chemistry. Over the past few decades, numerous biologically active molecules featuring fused pyrazole moieties have been excavated and synthesized, some of which represented by sildenafil have been marketed as drugs, and the biological importance together with chemical synthesis strategies of fused pyrazole compounds, including structural modification based on lead compounds, have been steadily progressing. In this review, we focused our attention on the biological importance of fused pyrazoles and highlighted recent progress in the synthesis of this framework over the past 10 years. What' s more, the limitations, challenges, and future prospects were proposed, wishing to provide references for the development of pyrazole fused frameworks in the field of medicinal chemistry. Contents.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hui Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
4
|
Tan Y, Lang J, Tang M, Li J, Mi P, Zheng X. N
‐Formylsaccharin as a CO Source: Applications and Recent Developments. ChemistrySelect 2021. [DOI: 10.1002/slct.202004609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Tan
- Group of Lead Compound Department of Pharmacy Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang Hunan 421001 China
| | - Jiajia Lang
- Medical Instrument and Equipment Technology Laboratory Hengyang Medical College University of South China Hengyang Hunan 421001 China
| | - Meilun Tang
- Group of Lead Compound Department of Pharmacy Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang Hunan 421001 China
| | - Jingjing Li
- Group of Lead Compound Department of Pharmacy Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang Hunan 421001 China
| | - Pengbing Mi
- Group of Lead Compound Department of Pharmacy Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang Hunan 421001 China
| | - Xing Zheng
- Group of Lead Compound Department of Pharmacy Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang Hunan 421001 China
| |
Collapse
|
5
|
Rice S, Cox DJ, Marsden SP, Nelson A. Efficient unified synthesis of diverse bridged polycyclic scaffolds using a complexity-generating 'stitching' annulation approach. Chem Commun (Camb) 2021; 57:599-602. [PMID: 33345263 DOI: 10.1039/d0cc06975b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regioselective and stereospecific directed C-H arylation of simple amine substrates, and cyclisation, delivered 30 diverse, three-dimensional scaffolds. The unified approach significantly expanded the range of bridged ring systems that contain both a nitrogen atom and an aromatic ring.
Collapse
Affiliation(s)
- Scott Rice
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel J Cox
- Redbrick Molecular, The Innovation Centre, 217 Portobello, Sheffield, S1 4DP, UK
| | | | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Luise N, Wyatt EW, Tarver GJ, Wyatt PG. A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semi-Saturated Heterobicyclic Fragments. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nicola Luise
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Eleanor W. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Gary J. Tarver
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Paul G. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| |
Collapse
|