1
|
Li J, Wang XF, Hu C, Liu LL. Carbene-Stabilized Phosphagermylenylidene: A Heavier Analog of Isonitrile. J Am Chem Soc 2024; 146:14341-14348. [PMID: 38726476 DOI: 10.1021/jacs.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Isolation of an Anionic Dicarbene Embedded Sn 2 P 2 Cluster and Reversible CO 2 Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305545. [PMID: 38018314 PMCID: PMC10837339 DOI: 10.1002/advs.202305545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Decarbonylation of a cyclic bis-phosphaethynolatostannylene [(ADC)Sn(PCO)]2 based on an anionic dicarbene framework (ADC = PhC{N(Dipp)C}2 ; Dipp = 2,6-iPr2 C6 H3 ) under UV light results in the formation of a Sn2 P2 cluster compound [(ADC)SnP]2 as a green crystalline solid. The electronic structure of [(ADC)SnP]2 is analyzed by quantum-chemical calculations. At room temperature, [(ADC)SnP]2 reversibly binds with CO2 and forms [(ADC)2 {SnOC(O)P}SnP]. [(ADC)SnP]2 enables catalytic hydroboration of CO2 and reacts with elemental selenium and Fe2 (CO)9 to afford [(ADC)2 {Sn(Se)P2 }SnSe] and [(ADC)Sn{Fe(CO)4 }P]2 , respectively. All compounds are characterized by multinuclear NMR spectroscopy and their solid-state molecular structures are determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Aman M, Dostál L, Růžička A, Růžičková Z, Jambor R. B-substituted group 1 phosphides: synthesis and reactivity. Dalton Trans 2023; 52:16870-16885. [PMID: 37916487 DOI: 10.1039/d3dt02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
1-Boryl-8-phosphinonaphthalenes 1-BCy2-8-PCl2-C10H6 (1) and 1-BCy2-8-PPhCl-C10H6 (2) were prepared and used as starting materials for the synthesis of B-substituted phosphides. The reduction of 1 and 2 by Mg provided neutral compounds [1-BCy-8-PCy-C10H6]2 (3) and [1-BCy2-8-PPh-C10H6]2 (4). Compound 3 represents the dimer of phosphinoborane 1-BCy-8-PCy-C10H6 while complex 4 is a rare example of a discrete B ← P coordinated diphosphine. The reduction of 2 by Na or K in THF yielded B-substituted group 1 phosphides [Na(THF)3]+[1-BCy2-8-PPh-C10H6]- (5) and {[K(THF)2]+[1-BCy2-8-PPh-C10H6]-}∞ (6), which structurally resembled bulky group 1 phosphides. Complex 5 showed easy activation of elemental chalcogens E (E = O, S, Se) to give B-substituted chalcogenophosphinites {[Na(THF)2]+[1-BCy2-8-P(E)Ph-C10H6]}2 (E = O (7), S (8), Se (9)) as the products of chalcogen insertion into the P-Na bond. Importantly no oxidation to dichalcogenophosphinates was observed. Compound 5 is tolerant of the CO polar bonds in organic substrates and the reactions of 5 with 2,3-butanedione or an acyl chloride provided {[Na(THF)2]+[1-BCy2-8-P{CHC(O)C(Me)O}Ph-C10H6]-}2 (10) and [1-BCy2-8-P{C(O)tBu}Ph-C10H6] (11). Finally, B-coordinated phosphatetrylenes [1-BCy2-8-P(SnL)Ph-C10H6] (12) and [1-BCy2-8-P(PbL)Ph-C10H6] (13) (L is {2,6-(Me2NCH2)C6H3}-) were also prepared by substitution reactions of 5.
Collapse
Affiliation(s)
- Michal Aman
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
5
|
Li C, Hinz A. Photolysis of Phosphaketenyltetrylenes with a Carbazolyl Substituent. Chem Asian J 2023; 18:e202300698. [PMID: 37702378 DOI: 10.1002/asia.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Phosphaketenes of divalent group 14 compounds can potentially serve as precursors for the synthesis of heavy multiple-bond systems. We have employed the dtbp Cbz substituent (dtbp Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl) to prepare such phosphaketenyltetrylenes [(dtbp Cbz)EPCO] (E=Ge, Sn, Pb). While the phosphaketenyltetrylenes are stable at ambient conditions, they can be readily decarbonylated photolytically. For the germylene and stannylene derivatives, dimeric diphosphene-type products [(dtbp Cbz)EP]2 (E=Ge, Sn) were obtained. In contrast, photolysis of the phosphaketenylplumbylene, via isomerisation of the [(dtbp Cbz)PbP] intermediate to [(dtbp Cbz)PPb], afforded an unsymmetric and incompletely decarbonylated product [(dtbp Cbz)2 Pb2 P2 CO] formally comprising a [(dtbp Cbz)PPb] and a [(dtbp Cbz)PbPCO] moiety.
Collapse
Affiliation(s)
- Chenxin Li
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
7
|
Nag E, Francis M, Battuluri S, Sinu BB, Roy S. Isolation of Elusive Phosphinidene‐Chlorotetrylenes: The Heavier Cyanogen Chloride Analogues. Chemistry 2022; 28:e202201242. [DOI: 10.1002/chem.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ekta Nag
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Maria Francis
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sridhar Battuluri
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Bhavya Bini Sinu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
8
|
Timofeeva V, Baeza JML, Nougué R, Syroeshkin M, Segundo Rojas Guerrero R, Saffon-Merceron N, Altınbaş Özpınar G, Rathjen S, Müller T, Baceiredo A, Kato T. Reductive Elimination at Pb(II) Center of an (Amino)plumbylene-Substituted Phosphaketene: New Pathway for Phosphinidene Synthesis. Chemistry 2022; 28:e202201615. [PMID: 35638144 PMCID: PMC9401577 DOI: 10.1002/chem.202201615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
A stable (amino)plumbylene‐substituted phosphaketene 3 was synthesized by the successive reactions of PbCl2 with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino‐ and phosphanylidene‐phosphaketenes (6 and 7), via a reductive elimination at the PbII center forming new N−P and P−P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene. This result provides a new synthetic route to phosphinidenes, extending and facilitating further their access.
Collapse
Affiliation(s)
- Vladislava Timofeeva
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - José Miguel Léon Baeza
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Raphael Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mikhail Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Rene Segundo Rojas Guerrero
- Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Saskia Rathjen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
9
|
Sharma MK, Dhawan P, Helling C, Wölper C, Schulz S. Bis-Phosphaketenes LM(PCO) 2 (M=Ga, In): A New Class of Reactive Group 13 Metal-Phosphorus Compounds. Chemistry 2022; 28:e202200444. [PMID: 35226777 PMCID: PMC9314960 DOI: 10.1002/chem.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Phosphaketenes are versatile reagents in organophosphorus chemistry. We herein report on the synthesis of novel bis-phosphaketenes, LM(PCO)2 (M=Ga 2 a, In 2 b; L=HC[C(Me)N(Ar)]2 ; Ar=2,6-i-Pr2 C6 H3 ) by salt metathesis reactions and their reactions with LGa to metallaphosphenes LGa(OCP)PML (M=Ga 3 a, In 3 b). 3 b represents the first compound with significant In-P π-bonding contribution as was confirmed by DFT calculations. Compounds 3 a and 3 b selectively activate the N-H and O-H bonds of aniline and phenol at the Ga-P bond and both reactions proceed with a rearrangement of the phosphaethynolate group from Ga-OCP to M-PCO bonding. Compounds 2-5 are fully characterized by heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Pratima Dhawan
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Helling
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
- Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
10
|
He Y, Dai C, Wang D, Zhu J, Tan G. Phosphine-Stabilized Germylidenylpnictinidenes as Synthetic Equivalents of Heavier Nitrile and Isocyanide in Cycloaddition Reactions with Alkynes. J Am Chem Soc 2022; 144:5126-5135. [PMID: 35263091 DOI: 10.1021/jacs.2c00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reactions of chlorogermylene MsFluindtBu-GeCl 1, supported by a sterically encumbered hydrindacene ligand MsFluindtBu, with NaPCO(dioxane)2.5 and NaAsCO(18-c-6) in the presence of trimethylphosphine afforded trimethylphosphine-stabilized germylidenyl-phosphinidene 2 and -arsinidene 3, respectively. Structural and computational investigations reveal that the Ge-E' bond (E' = P and As) features a multiple-bond character. 2 and 3 exhibit diverse reactivity toward trimethylsilylacetylene and 4-tetrabutylphenylacetylene. Specifically, 2 underwent cycloadditions with both alkynes affording the first six-membered aromatic phosphagermabenzen-1-ylidenes 4 and 5, respectively, through the heavier isocyanide intermediate MsFluindtBu-PGe. In contrast, 3 could serve as a synthetic equivalent of heavier isocyanides and nitriles when treated with trimethylsilylacetylene and 4-tetrabutylphenylacetylene yielding arsagermene 6 and arsolylgermylene 7, respectively. The reaction mechanisms for the cycloadditions were investigated through density functional theory calculations. The reactivity studies highlight the potential of 2 and 3 in accessing heavy main-group element-containing heterocycles.
Collapse
Affiliation(s)
- Yuhao He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongmin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik M, Mindiola DJ. Phosphorus‐Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yerin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - David M. Kaphan
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
12
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik MH, Mindiola DJ. Phosphorus-Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021; 60:24411-24417. [PMID: 34435422 PMCID: PMC8559866 DOI: 10.1002/anie.202107475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Vrána J, Němec V, Samsonov MA, Růžička A. On the edge of the steric repulsion and reactivity of bulky anilines; a case study of chloro(imino)phosphine synthesis. Dalton Trans 2021; 50:14352-14361. [PMID: 34568883 DOI: 10.1039/d1dt02445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Benzhydryl-4-methyl-6-(1,1'-diphenyl-2-phenyl-ethyl)aniline was prepared by a three-step process. 2,6-Bis(benzhydryl)-4-methyl-aniline was protected by Schiff coupling, then benzylated and finally dealkylated by using hydrochloric acid and methanol. The resulting compound exhibits one of the highest buried volumes around the nitrogen atom of anilines prepared so far, but it reacts with phosphorus trichloride and triethylamine to give a monomeric chloro(imino)phosphine.
Collapse
Affiliation(s)
- Jan Vrána
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.
| | - Vlastimil Němec
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.
| | - Maksim A Samsonov
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.
| |
Collapse
|
14
|
Walley JE, Warring LS, Kertész E, Wang G, Dickie DA, Benkő Z, Gilliard RJ. Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC) 2OCP][OCP]. Inorg Chem 2021; 60:4733-4743. [PMID: 33689349 PMCID: PMC8277130 DOI: 10.1021/acs.inorgchem.0c03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The
synthesis and thermal redox chemistry of the first antimony
(Sb)– and bismuth (Bi)–phosphaketene adducts are described.
When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)]
is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble
precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined
with [Na[OCP]·(dioxane)x], Sb–
and Bi–phosphaketene complexes are isolated. Thus, NHC serves
as an essential mediator for the reaction. Immediately after the formation
of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the
phosphaketene carbon atom, forming NHC–C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid
state, 3 and 4 are dimeric with short intermolecular
Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the
pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP
salt, [(NHC)2OCP][OCP] (5). The formation
of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to
the known thermal reactivity for group 14 carbene–phosphaketene
complexes, further highlighting the diverse reactivity of [OCP]− with main-group elements. All new compounds have been
fully characterized by single-crystal X-ray diffraction, multinuclear
NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density
functional theory (DFT). An N-heterocyclic carbene (NHC) was used
to support the otherwise unstable Ph2Sb—P=C=O
and Ph2Bi—P=C=O moieties. Exploration
of the thermal chemistry of these NHC−phosphaketene adducts
reveals the formation of the salt [NHC2OCP][OCP]. This
present work demonstrates the thermal chemistry of the 2-phospaethynolate
anion with heavier pnictogens (Sb and Bi).
Collapse
Affiliation(s)
- Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Levi S Warring
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| |
Collapse
|
15
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Vielseitiges Gallaphosphen: Von einem Ga‐P‐Ga‐Heteroallylkation über CO
2
‐Speicherung hin zu C(sp
3
)‐H‐Bindungsaktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahendra K. Sharma
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Christoph Wölper
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Stephan Schulz
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| |
Collapse
|
16
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Multi-Talented Gallaphosphene for Ga-P-Ga Heteroallyl Cation Generation, CO 2 Storage, and C(sp 3 )-H Bond Activation. Angew Chem Int Ed Engl 2021; 60:6784-6790. [PMID: 33368922 PMCID: PMC7986129 DOI: 10.1002/anie.202014381] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/12/2022]
Abstract
Gallaphosphene L(Cl)GaPGaL (2; L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ), which is synthesized by reaction of LGa(Cl)PCO (1) with LGa, reacts with [Na(OCP)(dioxane)2.5 ] to LGa(OCP)PGaL (3), whereas chloride abstraction with LiBArF 4 yields [LGaPGaL][BArF 4 ] (4; BArF 4 =B(C6 F5 )4 ). 4 represents a heteronuclear analog of the allyl cation according to quantum chemical calculations. Remarkably, 2 reversibly reacts with CO2 to yield L(Cl)Ga-P[μ-C(O)O]2 GaL (5), while reactions with acetophenone and acetone selectively give compounds 6 and 7 by C(sp3 )-H bond activation.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
17
|
Vrána J, Samsonov MA, Němec V, RůŽička A. Access to the most sterically crowded anilines via non-catalysed C-C coupling reactions. Chem Commun (Camb) 2020; 56:2487-2490. [PMID: 32002532 DOI: 10.1039/c9cc09497k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Variously substituted 2,6-bis(1,1-diarylethyl)anilines and 2,6-bis(trityl)anilines were prepared by a three-step high-yield process. Dimethyl-2-aminoisophtalate was modified by reaction with arylmagnesium bromides, and the hydroxy-derivatives obtained were etherified. Under the non-catalysed C-C coupling protocol, the formed bis[methyl(methoxy)diaryl]anilines react with various Grignard reagents to give highly substituted products. The buried volumes around the central nitrogen atom of the prepared compounds exceed the parameters for the known most sterically hindered anilines by about 20%.
Collapse
Affiliation(s)
- Jan Vrána
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.
| | | | | | | |
Collapse
|
18
|
Wilson DWN, Franco MP, Myers WK, McGrady JE, Goicoechea JM. Base induced isomerisation of a phosphaethynolato-borane: mechanistic insights into boryl migration and decarbonylation to afford a triplet phosphinidene. Chem Sci 2019; 11:862-869. [PMID: 34123064 PMCID: PMC8145529 DOI: 10.1039/c9sc05969e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP ([B] = N,N′-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), to its linkage isomer, a phosphaketenyl-borane, [B]PCO. Mechanistic insight into this unusual isomerisation was gained through a series of stoichiometric reactions of [B]OCP with isocyanides and theoretical calculations at the Density Functional Theory (DFT) level. [B]PCO decarbonylates under photolytic conditions to afford a novel boryl-substituted diphosphene, [B]P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P[B]. This reaction proceeds via a transient triplet phosphinidene which we have been able to observe spectroscopically by Electron Paramagnetic Resonance (EPR) spectroscopy. We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP, to its linkage isomer, a phosphaketenyl-borane, [B]PCO.![]()
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauricio P Franco
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
19
|
Nesterov V, Baierl R, Hanusch F, Ferao AE, Inoue S. N-Heterocyclic Carbene-Stabilized Germanium and Tin Analogues of Heavier Nitriles: Synthesis, Reactivity, and Catalytic Application. J Am Chem Soc 2019; 141:14576-14580. [DOI: 10.1021/jacs.9b08741] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Ramona Baierl
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
20
|
Hinz A. Pseudo-One-Coordinate Tetrylenium Salts Bearing a Bulky Carbazolyl Substituent. Chemistry 2019; 25:3267-3271. [PMID: 30716171 DOI: 10.1002/chem.201806346] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Syntheses of a bulky carbazole-based substituent, the parent 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butyl-carbazole (R-H) and a series of chlorotetrylenes, RECl (E=Ge, Sn, Pb), are described. Detailed analysis of the properties of the carbazole-based substituent revealed that it features flexible high bulkiness and electronic non-innocence, which may make it suitable for many applications in both main-group and transition-metal chemistry. To further showcase the employability of the novel substituent, the chlorotetrylenes were subjected to halide abstraction reactions, affording the corresponding tetrylenium salts [RE][Al(OC4 F9 )4 ] (E=Ge, Sn, Pb) as strongly coloured compounds.
Collapse
Affiliation(s)
- Alexander Hinz
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Gebäude 30.45, 76131, Karlsruhe, Germany
| |
Collapse
|
21
|
Bresien J, Schulz A, Thomas M, Villinger A. A Bismuth–Arene σ‐Complex – On the Edge of Menshutkin‐Type Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas Bresien
- Department of Inorganic Chemistry, Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Axel Schulz
- Department of Inorganic Chemistry, Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
- Department Material Design, Leibniz Institute for Catalysis at the University of Rostock Albert‐Einstein‐Str. 29a 18059 Rostock Germany
| | - Max Thomas
- Department of Inorganic Chemistry, Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Alexander Villinger
- Department of Inorganic Chemistry, Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
| |
Collapse
|
22
|
Mei Y, Borger JE, Wu DJ, Grützmacher H. Salen supported Al–O–CP and Ga–PCO complexes. Dalton Trans 2019; 48:4370-4374. [DOI: 10.1039/c9dt00485h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis and reactivity of salen supported OCP adducts of aluminium and gallium is reported.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Jaap E. Borger
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Dong-Jun Wu
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| |
Collapse
|