1
|
Abstract
Liposomes, which are artificial phospholipid vesicles with a bilayer membrane structure, have been developed and evaluated as a promising delivery system for vaccines. Here, we describe a procedure for the encapsulation of lipopeptide vaccines into liposomes. A liposomal formulation of lipid-core peptide was prepared via thin-film hydration followed by extrusion. The physicochemical properties of the liposomes, including their size, polydispersity, surface charge, and morphology, were analyzed using dynamic light scattering and transmission electron microscopy.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2021; 280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Dendrimers are well-defined, highly branched, multivalent and monodisperse molecules which host a range of attractive, yet functional, chemical and biological characteristics. A dendrimers accessible surface groups enable coupling to different functional moieties (e.g., antibodies, peptides, proteins, etc), which is further assisted by the dendrimers tailored size and surface charge. This adaptability allows for the preparation of molecularly precise vaccines with highly specific and predictable properties, and in conjunction with a dendrimers immune stimulating (adjuvanting) property, makes dendrimers attractive substrates for biomedical applications, including vaccines. This review highlights the structural and synthetic evolution of dendrimers throughout history, detailing the dendrimers role as both an adjuvant and carrier system for vaccine antigens, in addition to reviewing the development of commercially available vaccines for use in humans.
Collapse
Affiliation(s)
- Silvia Chowdhury
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Azuar A, Li Z, Shibu MA, Zhao L, Luo Y, Shalash AO, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A Streptococcus Vaccine Delivery. J Med Chem 2021; 64:2648-2658. [PMID: 33529034 DOI: 10.1021/acs.jmedchem.0c01660] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide antigens have been widely used in the development of vaccines, especially for those against autoimmunity-inducing pathogens and cancers. However, peptide-based vaccines require adjuvant and/or a delivery system to stimulate desired immune responses. Here, we explored the potential of self-adjuvanting poly(hydrophobic amino acids) (pHAAs) to deliver peptide-based vaccine against Group A Streptococcus (GAS). We designed and synthesized self-assembled nanoparticles with a variety of conjugates bearing a peptide antigen (J8-PADRE) and polymerized hydrophobic amino acids to evaluate the effects of structural arrangement and pHAAs properties on a system's ability to induce humoral immune responses. Immunogenicity of the developed conjugates was also compared to commercially available human adjuvants. We found that a linear conjugate bearing J8-PADRE and 15 copies of leucine induced equally effective, or greater, immune responses than commercial adjuvants. Our fully defined, adjuvant-free, single molecule-based vaccine induced the production of antibodies capable of killing GAS bacteria.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhuoqing Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, St. Lucia, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Aiga T, Manabe Y, Ito K, Chang T, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Aiga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Tsung‐Che Chang
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Ayane Miura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
5
|
Dai CC, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A Streptococcus. ACS Infect Dis 2020; 6:2502-2512. [PMID: 32786276 DOI: 10.1021/acsinfecdis.0c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group A Streptococcus (GAS) and GAS-related infections are a worldwide challenge, with no commercial GAS vaccine available. Polyethylenimine (PEI) attaches to the cells' surface and delivers cargo into endosomal and cytosolic compartments. We hypothesized that this will confer mucosal adjuvant properties for peptide antigens against group A Streptococcus (GAS). In this study, we successfully demonstrated the development of PEI incorporated liposomes for the delivery of a lipopeptide-based vaccine (LCP-1) against GAS. Outbred mice were administrated with the vaccine formulations intranasally, and immunological investigation showed that the PEI liposomes elicited significant mucosal and systemic immunity with the production of IgA and IgG antibodies. Antibodies were shown to effectively opsonize multiple isolates of clinically isolated GAS. This proof-of-concept study showed the capability for PEI liposomes to act as a safe vehicle for the delivery of GAS peptide antigens to elicit immune responses against GAS infection, making PEI a promising addition to liposomal mucosal vaccines.
Collapse
Affiliation(s)
- Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Grippo LD, Reidel IG, García MI, Streu A, Müller DM, Veaute CM. Gemini lipopeptides as vaccine adjuvants: a new role for these versatile carriers. Clin Exp Vaccine Res 2020; 9:159-163. [PMID: 32864372 PMCID: PMC7445326 DOI: 10.7774/cevr.2020.9.2.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The design of subunit vaccines requires new adjuvant systems. We designed and synthesized new lipopeptides (cysteine-based) of low molecular weight with different hydrophobic chains that dimerize becoming gemini lipopeptides. They were characterized and their adjuvant capacity was tested in mice by the inoculation of a protein antigen formulated with the lipopeptides, with and without the addition of CpG-oligodeoxynucleotides. Formulations were able to induce an immune response and produced no adverse effects. An adjuvant ability is described for the first time for this type of molecules.
Collapse
Affiliation(s)
- Lucía Daniela Grippo
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María Inés García
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alexis Streu
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana María Müller
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carolina Melania Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
7
|
Aiga T, Manabe Y, Ito K, Chang TC, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co-Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020; 59:17705-17711. [PMID: 32583549 DOI: 10.1002/anie.202007999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3 CSK4 , α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.
Collapse
Affiliation(s)
- Taku Aiga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shino Ohshima
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshie Kametani
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
8
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|