1
|
Rando C, Grewal S, Sokolov J, Kulhánek P, Šindelář V. Reversing selectivity of bambusuril macrocycles toward inorganic anions by installing spacious substituents on their portals. Chem Sci 2024:d4sc07150f. [PMID: 39677942 PMCID: PMC11639902 DOI: 10.1039/d4sc07150f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Two chiral bambusurils, which are diastereomers to each other, show remarkable differences in their binding affinity and selectivity toward inorganic anions as determined by isothermal titration calorimetry. These differences are explained by quantum-chemical calculations.
Collapse
Affiliation(s)
- Carola Rando
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Surbhi Grewal
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jan Sokolov
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
2
|
Sun G, Zhang X, Zheng Z, Zhang ZY, Dong M, Sessler JL, Li C. Chiral Macrocycles for Enantioselective Recognition. J Am Chem Soc 2024; 146:26233-26242. [PMID: 39269922 DOI: 10.1021/jacs.4c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The efficient synthesis of chiral macrocycles with highly enantioselective recognition remains a challenge. We have addressed this issue by synthesizing a pair of chiral macrocycles, namely, R/S-BINOL[2], achieving total isolated yields of up to 62% through a two-step reaction sequence. These macrocycles are readily purified by column chromatography over silica gel without the need for chiral separation, thus streamlining the overall synthesis. R/S-BINOL[2] demonstrated enantioselective recognition toward chiral ammonium salts, with enantioselectivity (KS/KR) values reaching up to 13.2, although less favorable separations were seen for other substrates. R/S-BINOL[2] also displays blue circularly polarized luminescence with a |glum| value of up to 2.2 × 10-3. The R/S-BINOL[2] macrocycles of this study are attractive as chiral hosts in that they both display enantioselective guest recognition and benefit from a concise, high-yielding synthesis. As such, they may have a role to play in chiral separations.
Collapse
Affiliation(s)
- Guang Sun
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xue Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhe Zheng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhi-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Ming Dong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| |
Collapse
|
3
|
Slávik P, Torrisi J, Jurček P, Sokolov J, Šindelář V. Synthesis of Enantiomerically Pure Bambus[6]urils Utilizing Orthogonal Protection of Glycolurils. J Org Chem 2023; 88:11514-11522. [PMID: 37505936 PMCID: PMC10442914 DOI: 10.1021/acs.joc.3c00667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 07/30/2023]
Abstract
A general strategy for the synthesis of 2N,4N'-disubstituted glycoluril enantiomers on a multigram scale using orthogonal protection is reported. The use of these glycolurils is demonstrated in the synthesis of enantiomerically pure bambus[6]uril macrocycles. Moreover, the deprotection of (S)-1-phenylethyl substituents on the macrocycle was achieved, opening access to various chiral bambus[6]urils via post-macrocyclization modification strategy.
Collapse
Affiliation(s)
- Petr Slávik
- Department
of Chemistry, Faculty of Science, Masaryk
University, 625 00 Brno, Czech
Republic
- RECETOX,
Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jacopo Torrisi
- Department
of Chemistry, Faculty of Science, Masaryk
University, 625 00 Brno, Czech
Republic
- RECETOX,
Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pia Jurček
- Department
of Chemistry, Faculty of Science, Masaryk
University, 625 00 Brno, Czech
Republic
- RECETOX,
Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Sokolov
- Department
of Chemistry, Faculty of Science, Masaryk
University, 625 00 Brno, Czech
Republic
- RECETOX,
Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vladimír Šindelář
- Department
of Chemistry, Faculty of Science, Masaryk
University, 625 00 Brno, Czech
Republic
- RECETOX,
Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Marchenko E, Luchsheva V, Baigonakova G, Bakibaev A, Vorozhtsov A. Functionalization of the Surface of Porous Nickel-Titanium Alloy with Macrocyclic Compounds. MATERIALS (BASEL, SWITZERLAND) 2022; 16:66. [PMID: 36614409 PMCID: PMC9821612 DOI: 10.3390/ma16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
For the first time, we performed functionalization of the surface of porous titanium nickelide alloys with bambusuril[6]-based macrocyclic compounds by different methods in order to provide the basis for saturation with therapeutic agents to impart antibacterial activity and accelerate its osteogenesis. It has been shown for the first time that the vacuum modification method is preferable for bambusuril deposition, since it provides a uniform deposition of organic matter on both the outer and inner surfaces of the pores. The effect of bambusuril deposition methods on the continuity, structure, and cytocompatibility of the porous titanium nickelide surface was evaluated. In vitro tests proved high biocompatibility and low toxicity of porous TiNi treated with BU[6] under vacuum. The SEM study of the structure of the surface layer of TiNi modified with BU[6] under the vacuum method showed that BU[6] agglomerates are uniformly deposited on the inner and outer surfaces of TiNi pores, which will provide an even saturation of BU[6] cavities with various pharmaceuticals, including antibiotics and inhibitors.
Collapse
|
5
|
De Simone NA, Chvojka M, Lapešová J, Martínez-Crespo L, Slávik P, Sokolov J, Butler SJ, Valkenier H, Šindelář V. Monofunctionalized Fluorinated Bambusurils and Their Conjugates for Anion Transport and Extraction. J Org Chem 2022; 87:9829-9838. [PMID: 35862261 DOI: 10.1021/acs.joc.2c00870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bambusurils are macrocyclic molecules that are known for their high binding affinity and selectivity toward anions. Here, we present the preparation of two bambusurils bearing fluorinated substituents and one carboxylic function. These monofunctionalized bambusurils were conjugated with crown ether and cholesterol units. The resulting conjugates were successfully tested in liquid-liquid extraction of inorganic salts and chloride/bicarbonate transport across lipid bilayers.
Collapse
Affiliation(s)
| | - Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Jana Lapešová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Luis Martínez-Crespo
- Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Petr Slávik
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Jan Sokolov
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough LE11 3TU, U.K
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/64, Brussels 1050, Belgium
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| |
Collapse
|
6
|
Abstract
The construction of chemical sensors that can distinguish molecular chirality has attracted increasing attention in recent years due to the significance of chiral organic molecules and the importance of detecting their absolute configuration and chiroptical purity. The supramolecular chirality sensing strategy has shown promising potential due to its advantages of high throughput, sensitivity, and fast chirality detection. This review focuses on chirality sensors based on macrocyclic compounds. Macrocyclic chirality sensors usually have inherent complexing ability towards certain chiral guests, which combined with the signal output components, could offer many unique advantages/properties compared to traditional chiral sensors. Chirality sensing based on macrocyclic sensors has shown rapid progress in recent years. This review summarizes recent advances in chirality sensing based on both achiral and chiral macrocyclic compounds, especially newly emerged macrocyclic molecules.
Collapse
|
7
|
Ikbal SA, Sakata Y, Akine S. A chiral spirobifluorene-based bis(salen) zinc(ii) receptor towards highly enantioselective binding of chiral carboxylates. Dalton Trans 2021; 50:4119-4123. [PMID: 33662079 DOI: 10.1039/d1dt00218j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have designed a new chiral receptor based on two salen zinc(ii) complex units connected with a spirobifluorene framework. The chiral receptor is proven to enantioselectively bind chiral carboxylate guests and the differences between the binding constants of enantiomeric guests were up to more than one order of magnitude.
Collapse
Affiliation(s)
- Sk Asif Ikbal
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
8
|
Hamacek J, Sokolov J, Šindelář V. Bambusuril Macrocycles as Mediators of Supramolecular Interactions: Application to the Europium Cage Helicate. Chemistry 2021; 27:5492-5497. [PMID: 33442893 DOI: 10.1002/chem.202005140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Indexed: 11/07/2022]
Abstract
Herein, it is shown how bambusurils can be used for tuning and/or characterizing supramolecular systems. Indeed, the addition of bambusurils as anion scavengers to metal-mediated self-assemblies allows manipulation of the subtle equilibria in the given system. This is demonstrated for the case of the tetranuclear europium helical cage, which is well suited to different applications. Among the reported results, experimental evidence is provided showing that perchlorate and triflate anions act as a molecular template for the cage assembly. The complexation of inorganic anions with neutral bambusurils resulted in bulky non-coordinating counterions that may trigger the self-assembly process or stimulate specific interactions between components. Moreover, bambusuril was able to selectively remove coordinating nitrates from the mixture with non-coordinating anions, enabling the regeneration of the helical cage.
Collapse
Affiliation(s)
- Josef Hamacek
- Centre de Biophysique Moléculaire (CBM), CNRS UPR4301, Rue Charles Sadron, 45071, Orléans, France
| | - Jan Sokolov
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
9
|
Panshina SY, Ponomarenko OV, Bakibaev AA, Malkov VS. ANALYSIS OF XRD STRUCTURAL PARAMETERS OF GLYCOLURIL AND ITS DERIVATIVES. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620090012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Mutihac RC, Bunaciu AA, Buschmann HJ, Mutihac L. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Abstract
A new class of bambus[4]urils (BU[4]s) composed of asymmetric N,N'-disubstituted glycoluril subunits with different alkyl groups were designed, synthesized, and fully characterized by NMR techniques and X-ray crystallography. Structural studies showed that four macrocyclic diastereoisomers are possible: two Sn symmetric achiral macrocycles and two macrocycles that are "inherently" chiral. The relative "head-to-tail" arrangement of the N-substituents in Bn4Me4BU[4], 5a, clearly observed by X-ray spectroscopy analysis, determines the overall symmetry of the bambusuril structure. Chiral Pr4Me4BU[4], 4b, was resolved by chiral high-performance liquid chromatography (HPLC) into its enantiomers, and all four inherently chiral bambusuril pairs (two Pr4Me4BU[4] and two Bn4Me4BU[4] stereoisomers, 4b, 4d, 5b, and 5d) were clearly observed by 1H NMR spectroscopy with the aid of (R)-BINOL as a chiral solvating agent. This latter methodology provides a rapid and powerful approach for investigating the enantiopurity of inherently chiral cavitands, which complements and augments the conventional chromatographic approaches.
Collapse
Affiliation(s)
| | - Ofer Reany
- Department of Natural Sciences, The Open University of Israel, Ra'anana 4353701, Israel
| |
Collapse
|
12
|
Sokolov J, Štefek A, Šindelář V. Functionalized Chiral Bambusurils: Synthesis and Host-Guest Interactions with Chiral Carboxylates. Chempluschem 2020; 85:1307-1314. [PMID: 32558370 DOI: 10.1002/cplu.202000261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Bambusurils are a class of macrocyclic anion receptors that exhibit notable anion recognition properties, able to bind various inorganic anions as well the carboxylates or sulfonates. Recently, we reported enantioselective recognition of chiral carboxylates using non-functionalized chiral bambusuril derivatives. Herein, we report the synthesis and host-guest properties of two new representatives of chiral bambusuril macrocycles bearing ester functional groups, differing by the substituents attached to their portals. Their supramolecular properties in terms of carboxylate binding were studied by means of NMR in DMSO-d6 . The reported bambusurils bind selected chiral carboxylates with enantioselectivity factors up to 3.1. The results indicated that the selectivity towards different carboxylates is governed by the steric constraint of the substituents surrounding bambusuril portals. No clear trend in the binding affinities and their enantioselectivities was found.
Collapse
Affiliation(s)
- Jan Sokolov
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Adam Štefek
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
13
|
Jiang Y, Wang C, Lu G, Zhao L, Gong L, Wang T, Qi D, Chen Y, Jiang J. Compartmentalization within Nanofibers of Double‐Decker Phthalocyanine Induces High‐Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry 2019; 25:16207-16213. [DOI: 10.1002/chem.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Guang Lu
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Luyang Zhao
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of ScienceChina University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
14
|
Prigorchenko E, Kaabel S, Narva T, Baškir A, Fomitšenko M, Adamson J, Järving I, Rissanen K, Tamm T, Aav R. Formation and trapping of the thermodynamically unfavoured inverted-hemicucurbit[6]uril. Chem Commun (Camb) 2019; 55:9307-9310. [PMID: 31309948 DOI: 10.1039/c9cc04990h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formation of inverted-cis-cyclohexanohemicucurbit[6]uril (i-cis-cycHC[6]), with up to 33% isolated yield, can be induced at the expense of thermodynamically favoured cis-cycHC[6]. Reaction selectivity is governed by the solution-based template-aided dynamic combinatorial chemistry and continuous precipitation of the formed macrocycles. Different binding affinities of three diastereomeric cycHC[6]s with trifluoroacetic acid is demonstrated.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Triin Narva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Anastassia Baškir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Maria Fomitšenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Jasper Adamson
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Toomas Tamm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
15
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size-Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019; 58:6230-6234. [PMID: 30664335 DOI: 10.1002/anie.201813431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 12/22/2022]
Abstract
Self-organization is one of the most intriguing phenomena of chemical matter. While the self-assembly of macrocycles and cages in dilute solutions has been extensively studied, it remains poorly understood in solvent-free environments. Provided here is the first example of using anionic templates to achieve selective assembly of differently-sized macrocycles in a solvent-free system. Using acid-catalyzed synthesis of cyclohexanohemicucurbiturils as a model, size-controlled, quantitative synthesis of 6- or 8-membered macrocycles by spontaneous anion-directed reorganization of mechanochemically-made oligomers in the solid state is demonstrated.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Maria Fomitšenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
16
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size‐Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Robin S. Stein
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Maria Fomitšenko
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Riina Aav
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|