1
|
Madabeni A, Bortoli M, Nogara PA, Ribaudo G, Dalla Tiezza M, Flohé L, Rocha JBT, Orian L. 50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories. Chemistry 2024; 30:e202403003. [PMID: 39304519 PMCID: PMC11639659 DOI: 10.1002/chem.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloOslo0315Norway
| | - Pablo A. Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul)Av. Leonel de Moura Brizola, 250196418-400Bagé, RSBrasil
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
| | - Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Leopold Flohé
- Department of Molecular MedicineUniversity of PadovaItaly
- Departamento de BioquímicaUniversidad de la RepúblicaMontevideoUruguay
| | - João B. T. Rocha
- Departamento de BioquímicaUniversidade Federaldo Rio Grande do Sul (UFRGS)90035-003Porto Alegre, RSBrazil
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
2
|
Figueroa LPR, de Carvalho RL, Almeida RG, Paz ERS, Diogo EBT, Araujo MH, Borges WS, Ramos VFS, Menna-Barreto RFS, Wood JM, Bower JF, da Silva Júnior EN. Generation and capture of naphthoquinonynes: a new frontier in the development of trypanocidal quinones via aryne chemistry. RSC Med Chem 2024:d4md00558a. [PMID: 39512946 PMCID: PMC11539365 DOI: 10.1039/d4md00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
The regioselective synthesis of functionalized naphthoquinones via the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using N-nucleophiles, and the second scope using pyridine N-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of T. cruzi has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC50/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.
Collapse
Affiliation(s)
- Laura P R Figueroa
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Esther R S Paz
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Warley S Borges
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ Rio de Janeiro RJ 21045-900 Brazil
| | | | - James M Wood
- The Ferrier Research Institute, Victoria University of Wellington Wellington 6012 New Zealand
| | - John F Bower
- University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| |
Collapse
|
3
|
Gim J, Rubio PYM, Mohandoss S, Lee YR. Lewis Acid-Catalyzed Benzannulation of Vinyloxiranes with 3-Formylchromones or 1,4-Quinones for Diversely Functionalized 2-Hydroxybenzophenones, 1,4-Naphthoquinones, and Anthraquinones. J Org Chem 2024; 89:2538-2549. [PMID: 38302117 DOI: 10.1021/acs.joc.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A facile and convenient protocol for the regioselective construction of functionalized 2-hydroxybenzophenones is described. This protocol involves the Sc(OTf)3/BF3·OEt2-catalyzed benzannulation of 2-vinyloxirans with 3-formylchromone, which involves cascade in situ diene formation, [4 + 2] cycloaddition, elimination, and ring-opening strategies. Moreover, it provides an expedited synthetic pathway to access biologically intriguing 1,4-naphthoquinones and anthraquinones including vitamin K3 and tectoquinone. The synthesized compounds also hold potential for use as UV filters and show promise as chemosensors for Cu2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Jihwan Gim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
4
|
da Costa GP, Blödorn GB, Barcellos AM, Alves D. Recent Advances in the Use of Diorganyl Diselenides as Versatile Catalysts. Molecules 2023; 28:6614. [PMID: 37764391 PMCID: PMC10534850 DOI: 10.3390/molecules28186614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The importance of organoselenium compounds has been increasing in synthetic chemistry. These reagents are well-known as electrophiles and nucleophiles in many organic transformations, and in recent years, their functionality as catalysts has also been largely explored. The interest in organoselenium-based catalysts is due to their high efficacy, mild reaction conditions, strong functional compatibility, and great selectivity. Allied to organoselenium catalysts, the use of inorganic and organic oxidants that act by regenerating the catalytic species for the reaction pathway is common. Here, we provide a comprehensive review of the last five years of organic transformations promoted by diorganyl diselenide as a selenium-based catalyst. This report is divided into four sections: (1) cyclisation reactions, (2) addition reactions and oxidative functionalisation, (3) oxidation and reduction reactions, and (4) reactions involving phosphorus-containing starting materials.
Collapse
Affiliation(s)
- Gabriel Pereira da Costa
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Gustavo Bierhals Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Angelita Manke Barcellos
- Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande 96203-900, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| |
Collapse
|
5
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O’Donoghue AJ, da Silva
Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M pro and Papain-like Protease PL pro of SARS-CoV-2. J Chem Inf Model 2022; 62:6553-6573. [PMID: 35960688 PMCID: PMC9397563 DOI: 10.1021/acs.jcim.2c00693] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 9.0 μM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 μM to 3.3 μM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Lucianna H. Santos
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2),
Eberhard Karls University Tübingen, Auf der
Morgenstelle 8, 72076 Tübingen, Germany
| | - Renata G. Almeida
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Elany B. Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Rafael E. O. Rocha
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Joyce C. Oliveira
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Luiza V. Barreto
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
- Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic, 16610 Prague,
Czech Republic
| | - Miriam A. Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious
Diseases, University of California San Diego, La Jolla,
California 92093, United States
| | - Conner Bardine
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - André L. Lourenço
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Eufrânio N. da Silva
Júnior
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| |
Collapse
|
6
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and papain-like protease PLpro of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.05.475095. [PMID: 35018373 PMCID: PMC8750648 DOI: 10.1101/2022.01.05.475095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
|
7
|
Oheix E, Gravel E, Doris E. Vapor phase catalytic photooxidation of sulfides to sulfoxides: application to the neutralization of sulfur mustard simulants. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light photocatalytic approach was developped for the aerobic oxidation of sulfides into the corresponding sulfoxides, including sulfur mustard simulants. The heterogeneous catalytic system is selective, operates in the gas...
Collapse
|
8
|
Pancrazzi F, Maestri G, Maggi R, Viscardi R. Oxidative Dearomatization of Phenols and Polycyclic Aromatics with Hydrogen Peroxide Triggered by Heterogeneous Sulfonic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francesco Pancrazzi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Rosanna Viscardi
- Casaccia Research Center ENEA Santa Maria di Galera 00123 Roma Italy
| |
Collapse
|
9
|
Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, Bower JF, Jardim GAM, da Silva Júnior EN, Torres-Santos EC, Menna-Barreto RFS. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities. Curr Pharm Des 2021; 27:1807-1824. [PMID: 33167829 DOI: 10.2174/1381612826666201109111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F Cunha-Junior
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Valter V Andrade-Neto
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - John F Bower
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Guilherme A M Jardim
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo C Torres-Santos
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. CHEM REC 2021; 21:2604-2637. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Metal-catalysed C-H functionalization has emerged as a powerful platform for the derivatization of quinones, a class of compounds with wide-ranging applications. This review organises and discusses the evolution of this chemistry from early Fujiwara-Moritani reactions, through to modern directing-group assisted C-H functionalization processes, including C-H functionalization reactions directed by the quinone ring itself. Mechanistic details of these reactions are provided to afford insight into how the unique reactivity of quinoidal compounds has been leveraged in each example.
Collapse
Affiliation(s)
- James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
11
|
New Amides Containing Selenium as Potent Leishmanicidal Agents Targeting Trypanothione Reductase. Antimicrob Agents Chemother 2020; 65:AAC.00524-20. [PMID: 33046492 DOI: 10.1128/aac.00524-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Two new series of 28 selenocyanate and diselenide derivatives containing amide moieties were designed, synthesized, and evaluated for their leishmanicidal activity against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Eleven compounds exhibited excellent leishmanicidal activity with EC50 values lower than the reference drug miltefosine (EC50 = 2.84 μM). In addition, for six of them the selectivity index ranged from 9 to >1,442, greater than both references used. The most potent and selective compounds were compounds 2h, 2k, and 2m that displayed EC50 values of 0.52, 1.19, and 0.50 μM, respectively, and a high selectivity index (SI) when tested against THP-1 monocytic cells (SI = >1,442, >672, and >1,100, respectively). These derivatives showed an efficacy similar to that of the reference drugs but much better SI values. They also showed interesting activity values against infected macrophages. Trypanothione reductase (TryR) activity and intracellular thiol level measurement assays were performed for the three best compounds in an attempt to elucidate their mechanism of action. Despite that the new analogs exhibited comparable or better inhibitory activities than the reference TryR inhibitors, more studies are necessary to confirm this result. In summary, our findings suggest that the three compounds described here could constitute leading leishmanicidal drug candidates.
Collapse
|
12
|
Almeida RG, Valença WO, Rosa LG, de Simone CA, de Castro SL, Barbosa JMC, Pinheiro DP, Paier CRK, de Carvalho GGC, Pessoa C, Goulart MOF, Kharma A, da Silva Júnior EN. Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: redox and biological implications. RSC Med Chem 2020; 11:1145-1160. [PMID: 33479619 PMCID: PMC7651858 DOI: 10.1039/d0md00072h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Ortho-Quinones represent a special class of redox active compounds associated with a spectrum of pronounced biological activities, including selective cytotoxicity and antimicrobial actions. The modification of the quinone ring by simple nitrogen and sulphur substitutions leads to several new classes of compounds with their own, distinct redox behaviour and equally distinct activities against cancer cell lines and Trypanosoma cruzi. Some of the compounds investigated show activity against T. cruzi at concentrations of 24.3 and 65.6 μM with a selectivity index of around 1. These results demonstrate that simple chemical modifications on the ortho-quinone ring system, in particular, by heteroatoms such as nitrogen and sulphur, transform these simple redox molecules into powerful cytotoxic agents with considerable "potential", not only in synthesis and electrochemistry, but also, in a broader sense, in health sciences.
Collapse
Affiliation(s)
- Renata G Almeida
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| | - Wagner O Valença
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
- Center for the Development of Chemical Technologies , State University of Mato Grosso do Sul , Naviraí , 79950-000 , MS , Brazil
| | - Luísa G Rosa
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| | - Carlos A de Simone
- Department of Physics and Informatics , Institute of Physics , University of São Paulo , São Carlos , 13560-160 , SP , Brazil
| | | | | | - Daniel P Pinheiro
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Carlos R K Paier
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Guilherme G C de Carvalho
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Marilia O F Goulart
- Institute of Chemistry and Biotechnology , Federal University of Alagoas , CEP 57072-970 , Maceió , AL , Brazil
| | - Ammar Kharma
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
- Division of Bioorganic Chemistry , School of Pharmacy , University of Saarland , D-66123 Saarbruecken , Germany
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| |
Collapse
|
13
|
Wood JM, Satam NS, Almeida RG, Cristani VS, de Lima DP, Dantas-Pereira L, Salomão K, Menna-Barreto RF, Namboothiri IN, Bower JF, da Silva Júnior EN. Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorg Med Chem 2020; 28:115565. [DOI: 10.1016/j.bmc.2020.115565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|
14
|
China H, Tanihara K, Sasa H, Kikushima K, Dohi T. Regiodivergent oxidation of alkoxyarenes by hypervalent iodine/oxone® system. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Abstract
The straightforward oxidation of electron-rich arenes, namely, phenols, naphthols, and anisole derivatives, under mild reaction conditions, is described by means of the use of an environmentally benign HFIP-UHP system. The corresponding quinones or hydroxylated arenes were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Natalia Llopis
- Departamento de Quı́mica Orgánica and Instituto de Sı́ntesis Orgánica (ISO), Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| | - Alejandro Baeza
- Departamento de Quı́mica Orgánica and Instituto de Sı́ntesis Orgánica (ISO), Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| |
Collapse
|
16
|
Herrera F, Luna A, Fernández I, Almendros P. Transition metal-free cyclobutene rearrangement in fused naphthalen-1-ones: controlled access to functionalized quinones. Chem Commun (Camb) 2020; 56:1290-1293. [DOI: 10.1039/c9cc08628e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The divergent preparation of 1,4-naphthoquinones and tetraphene-7,12-diones, which bear the ABCD-ring of landomycins, has been accomplished directly through oxidative reorganization of previously non-isolable cyclobuta[a]naphthalen-4(2H)-ones.
Collapse
Affiliation(s)
- Fernando Herrera
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Amparo Luna
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General
- IQOG-CSIC
- Juan de la Cierva 3
- 28006-Madrid
- Spain
| |
Collapse
|
17
|
Reis WJ, Bozzi ÍA, Ribeiro MF, Halicki PC, Ferreira LA, Almeida da Silva PE, Ramos DF, de Simone CA, da Silva Júnior EN. Design of hybrid molecules as antimycobacterial compounds: Synthesis of isoniazid-naphthoquinone derivatives and their activity against susceptible and resistant strains of Mycobacterium tuberculosis. Bioorg Med Chem 2019; 27:4143-4150. [DOI: 10.1016/j.bmc.2019.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
|
18
|
Gopi E, Geertsen V, Gravel E, Doris E. Catalytic Dehydrosulfurization of Thioamides to Nitriles by Gold Nanoparticles Supported on Carbon Nanotubes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elumalai Gopi
- Service de Chimie Bioorganique et de Marquage (SCBM), CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Valérie Geertsen
- NIMBE, CEA, CNRSUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
19
|
Dias GG, Nascimento TAD, de Almeida AKA, Bombaça ACS, Menna-Barreto RFS, Jacob C, Warratz S, da Silva Júnior EN, Ackermann L. Ruthenium(II)-Catalyzed C-H Alkenylation of Quinones: Diversity-Oriented Strategy for Trypanocidal Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gleiston G. Dias
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; UFMG 31270-901 Belo Horizonte, MG Brazil
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Tamires A. do Nascimento
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; UFMG 31270-901 Belo Horizonte, MG Brazil
| | - Andresa K. A. de Almeida
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; UFMG 31270-901 Belo Horizonte, MG Brazil
| | | | | | - Claus Jacob
- Division of Bioorganic Chemistry; School of Pharmacy; Saarland University; 66123 Saarbrücken Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Eufrânio N. da Silva Júnior
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; UFMG 31270-901 Belo Horizonte, MG Brazil
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
20
|
Almeida RG, de Carvalho RL, Nunes MP, Gomes RS, Pedrosa LF, de Simone CA, Gopi E, Geertsen V, Gravel E, Doris E, da Silva Júnior EN. Carbon nanotube–ruthenium hybrid towards mild oxidation of sulfides to sulfones: efficient synthesis of diverse sulfonyl compounds. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00384c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru nanoparticles on carbon nanotubes were used in the mild oxidation of sulfides to sulfones.
Collapse
Affiliation(s)
- Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renato L. de Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Mateus P. Nunes
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Roberto S. Gomes
- Department of Chemistry and Chemical Biology
- Harvard University
- USA
| | | | | | - Elumalai Gopi
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | | | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | | |
Collapse
|
21
|
Jardim GAM, Bozzi ÍAO, Oliveira WXC, Mesquita-Rodrigues C, Menna-Barreto RFS, Kumar RA, Gravel E, Doris E, Braga AL, da Silva Júnior EN. Copper complexes and carbon nanotube–copper ferrite-catalyzed benzenoid A-ring selenation of quinones: an efficient method for the synthesis of trypanocidal agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj02026h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A-ring selenation of naphthoquinones and anthraquinones is reported. The reaction proceeds in the presence of a copper source, and provides an efficient and general method for preparing selenium-based quinones with trypanocidal activity.
Collapse
Affiliation(s)
- Guilherme A. M. Jardim
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Ícaro A. O. Bozzi
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Willian X. C. Oliveira
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | | | - Ramar A. Kumar
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
- SRM Research Institute
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Antonio L. Braga
- Department of Chemistry
- Federal University of Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | | |
Collapse
|
22
|
Ponduru TT, Qiu C, Mao JX, Leghissa A, Smuts J, Schug KA, Dias HVR. Copper(i)-based oxidation of polycyclic aromatic hydrocarbons and product elucidation using vacuum ultraviolet spectroscopy and theoretical spectral calculations. NEW J CHEM 2018. [DOI: 10.1039/c8nj04740e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorinated 1,3,5-triazapentadienyl complexes of copper catalyze the oxidation PAHs to quinones using H2O2as an oxidant under mild conditions.
Collapse
Affiliation(s)
- Tharun T. Ponduru
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Changling Qiu
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - James X. Mao
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Allegra Leghissa
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | | | - Kevin A. Schug
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|