1
|
Xu X, Shen F, Lv G, Lin J. Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate. World J Microbiol Biotechnol 2024; 40:321. [PMID: 39279003 DOI: 10.1007/s11274-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Feng Shen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Gan Lv
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Song J, Chai L, Kumar A, Zhao M, Sun Y, Liu X, Pan J. Precise Tuning of Hollow and Pore Size of Bimetallic MOFs Derivate to Construct High-Performance Nanoscale Materials for Supercapacitors and Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306272. [PMID: 37988649 DOI: 10.1002/smll.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Indexed: 11/23/2023]
Abstract
Precise control of pore volume and size of carbon nanoscale materials is crucial for achieving high capacity and rate performances of charge/discharge. In this paper, starting from the unique mechanism of the role of In, Zn combination, and carboxyl functional groups in the formation of the lumen and pore size, the composition of InZn-MIL-68 is regulated to precisely tune the diameter and wall pore size of the hollow carbon tubes. The hollow carbon nanotubes (CNT) with high-capacity storage and fast exchange of Na+ ions and charges are prepared. The CNT possess ultra-high specific capacitance and ultra-long cycle life and also offer several times higher Na+ ion storage capacity and rate performance than the existing CNTs. Density functional theory calculations and tests reveal that these superior characteristics are attributed to the spacious hollow structure, which provides sufficient space for Na+ storage and the tube wall's distinctive porosity of tube wall as well as open ends for facilitating Na+ rapid desorption. It is believed that precise control of sub-nanopore volume and pore size by tuning the composition of the carbon materials derived from bimetallic metal-organic frameworks (MOFs) will establish the basis for the future development of high-energy density and high-power density supercapacitors and batteries.
Collapse
Affiliation(s)
- Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Man Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Wang C, Su J, Lan H, Wang C, Zeng Y, Chen R, Jin T. Preparation of the N, P-Codoped Carbonized UiO-66 Nanocomposite and Its Application in Supercapacitors. ACS OMEGA 2023; 8:44689-44697. [PMID: 38046337 PMCID: PMC10688160 DOI: 10.1021/acsomega.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 12/05/2023]
Abstract
Preparing high-performance electrode materials from metal-organic framework precursors is currently a hot research topic in the field of energy storage materials. Improving the conductivity of such electrode materials and further increasing their specific capacitance are key issues that must be addressed. In this work, we prepared phosphoric acid-functionalized UiO-66 material as a precursor for carbonization, and after carbonization, it was combined with activated carbon to obtain nitrogen-/phosphorus-codoped carbonized UiO-66 composite material (N/P-C-UiO-66@AC). This material exhibits excellent conductivity. In addition, the carbonized product ZrO2 and the nitrogen-/phosphorus-codoped structure evidently improve the pseudocapacitance of the material. Electrochemical test results show that the material has a good electrochemical performance. The specific capacitance of the supercapacitor made from this material at 1.0 A/g is 140 F/g. After 5000 charge-discharge cycles at 10 A/g, its specific capacitance still remains at 88.5%, indicating that the composite material has good cycling stability. The symmetric supercapacitor assembled with this electrode material also has a high energy density of 11.0 W h/kg and a power density of 600 W/kg.
Collapse
Affiliation(s)
- Chunyan Wang
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Jingwei Su
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Haiyan Lan
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Chongshi Wang
- College
of Engineering, Department of Civil, Architectural & Environmental
Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Yi Zeng
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Rong Chen
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Tianxiang Jin
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
4
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
5
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Zhao X, Li C, Sha L, Yang K, Gao M, Chen H, Jiang J. In-Built Fabrication of MOF Assimilated Porous Hollow Carbon from Pre-Hydrolysate for Supercapacitor. Polymers (Basel) 2022; 14:polym14163377. [PMID: 36015634 PMCID: PMC9412341 DOI: 10.3390/polym14163377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
With the fast consumption of traditional fossil fuels and the urgent requirement for a low-carbon economy and sustainable development, supercapacitors are gaining more and more attention as a clean energy storage and conversion device. The research on electrode materials for supercapacitors has become a hot topic nowadays. An electrode material for a supercapacitor, comprising the ZIF-67 in-built carbon-based material, was prepared from a biomass pre-hydrolysate via a hydrothermal process. As a by-product of dissolving slurry, the pre-hydrolysate is rich in carbon, which is an excellent biomass resource. The utilization of pre-hydrolysate to prepare carbon energy materials could realize the high value utilization of pre-hydrolysate and the efficient energy conversion of biomass. Meanwhile, the cobalt-based MOF (such as ZIF-67), as a porous crystalline material, has the advantages of having a regular order, high specific surface area and controllable pore size, as well as good thermal and chemical stability. The addition of ZIF-67 modified the morphology and pore structure of the carbon, and the obtained samples showed outstanding electrochemical performance. One- and two-step synthetic processes generated specimens with a coral-like cross-linked structure and a new type of rough, hollow, dandelion-like structure, respectively, and the pore size was in the range of 2.0–5.0 nm, which is conducive to ion transport and charge transfer. In C2-ZIF-67, the hollow structures could effectively prevent the accumulation of the electrochemical active center, which could provide enough space for the shrinkage and expansion of particles to protect them from the interference of electrolytes and the formation of solid electrolyte interphase film layers. Additionally, the plush tentacle structure with low density and a large specific surface area could expose more active sites and a large electrolyte electrode contact area, and short electron and charge transport paths. Importantly, active, free electrons of small amounts of Co-MOF (1 wt%) could be stored and released through the redox reaction, further improving the electrical conductivity of Carbon-ZIF-67 materials in this work. Consequently, C2-ZIF-67 exhibited superior specific capacitance (400 F g−1, at 0.5 A g−1) and stability (90%, after 10,000 cycles).
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Correspondence: (X.Z.); (H.C.); (J.J.); Tel./Fax: +86-0531-89631168 (X.Z.)
| | - Changwei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lei Sha
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Kang Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Min Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Honglei Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Correspondence: (X.Z.); (H.C.); (J.J.); Tel./Fax: +86-0531-89631168 (X.Z.)
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Correspondence: (X.Z.); (H.C.); (J.J.); Tel./Fax: +86-0531-89631168 (X.Z.)
| |
Collapse
|
7
|
Li C, Sha L, Yang K, Kong F, Li P, Tao Y, Zhao X, Chen H. Effects of ultrafiltration on Co-Metal Organic Framework/pre-hydrolysis solution carbon materials for supercapacitor energy storage. Front Chem 2022; 10:991230. [PMID: 36051623 PMCID: PMC9425199 DOI: 10.3389/fchem.2022.991230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Here, a Co-Metal Organic Framework/pre-hydrolysis (Co-MOF/pre-hydrolysis) solution carbon material is prepared by a mild and environmentally-friendly hydrothermal carbonization technique using a pulping pre-hydrolysis solution as the raw material and Co-MOF as the metal dopant. The stable hollow structure provide sufficient space for particle shrinkage and expansion, while the low density and large specific surface area of the long, hairy tentacle structure provide a greater contact area for ions, which shorten the transmission path of electrons and charges. The materials exhibit excellent specific capacitance (400 F/g, 0.5 A/g) and stability (90%, 10,000 cycles). The Change of different concentration ratios in the structures significantly affect the electrochemical performance. The specific surface area of the carbon materials prepared by ultra-filtration increased, but the specific surface area decrease as ultrafiltration concentration increase. The specific capacitance decrease from 336 F/g for C-ZIF-67-1/3 volume ultrafiltration to 258 F/g for C-ZIF-67-1/5 ultrafiltration. The results indicate that energy storage by the carbon materials relied on a synergistic effect between their microporous and mesoporous structures. The micropores provide storage space for the transmission of ions, while the mesopores provide ion transport channels. The separation of large and small molecules after ultrafiltration concentration limit the ion transmission and energy storage of the pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Zhao
- *Correspondence: Xin Zhao, ; Honglei Chen,
| | | |
Collapse
|
8
|
Zhang W, Yin H, Yu Z, Jia X, Liang J, Li G, Li Y, Wang K. Facile Synthesis of 4,4'-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. NANOMATERIALS 2022; 12:nano12122062. [PMID: 35745400 PMCID: PMC9227198 DOI: 10.3390/nano12122062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted significant research interest for supercapacitor applications due to their high-tunable conductivity and their structure’s pore size. In this work, we report a facile one-step hydrothermal method to synthesize nickel-based metal-organic frameworks (MOF) using organic linker 4,4′-biphenyl dicarboxylic acid (BPDC) for high-performance supercapacitors. The pore size of the Ni-BPDC-MOF nanostructure is tuned through different synthesization temperatures. Among them, the sample synthesized at 180 °C exhibits a nanoplate morphology with a specific surface area of 311.99 m2·g−1, a pore size distribution of 1–40 nm and an average diameter of ~29.2 nm. A high specific capacitance of 488 F·g−1 has been obtained at a current density of 1.0 A·g−1 in a 3 M KOH aqueous electrolyte. The electrode shows reliable cycling stability, with 85% retention after 2000 cycles. The hydrothermal process Ni-BPDC-MOF may provide a simple and efficient method to synthesize high-performance hybrid MOF composites for future electrochemical energy storage applications.
Collapse
Affiliation(s)
- Wenlei Zhang
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
| | - Hongwei Yin
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
| | - Zhichao Yu
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
| | - Xiaoxia Jia
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
| | - Jianguo Liang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Gang Li
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 361000, China;
- Correspondence: (G.L.); (K.W.)
| | - Yan Li
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 361000, China;
| | - Kaiying Wang
- Institute of Energy Innovation, College of Materials Science and Engineering & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (W.Z.); (H.Y.); (Z.Y.); (X.J.)
- Department of Microsystems-IMS, University of South-Eastern Norway, 3184 Horten, Norway
- Correspondence: (G.L.); (K.W.)
| |
Collapse
|
9
|
Engineering a curcumol-loaded porphyrinic metal-organic framework for enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2022; 214:112456. [PMID: 35290822 DOI: 10.1016/j.colsurfb.2022.112456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT), a non-invasive and safe treatment, is a clinical promising alternative strategy for certain cancers. Although PDT can trigger tumor specific immunity, the immunosuppressive tumor microenvironment severely limits the efficacy of photodynamic immunotherapy. Curcumol (CUR), extracted from essential oils of traditional Chinese medicine, has potential immune activation effect for cancer immunotherapy. Considering the fat solubility and volatility hinder the in vivo application of essential oils, a metal-organic framework system (Named as CuTPyP/F68) composed of porphyrin and Cu2+ was constructed for delivering CUR (Named as CUR@CuTPyP/F68). The in vitro assays proved that CUR@CuTPyP/F68 could directly kill tumor cells by the released CUR and singlet oxygen (1O2) generated under laser irradiation (marked as '+'). Moreover, CUR@CuTPyP/F68 had superior tumor targeting and retention capabilities, which effectively inhibited tumor growth in vivo with only a single dose. Finally, the mechanism of CUR-mediated enhanced PDT had been firstly proposed: (1) CUR@CuTPyP/F68(+)-treated group exhibited more CD4+ and CD8+ T cells infiltration in tumor tissue; (2) CUR@CuTPyP/F68(+)-treated group exhibited high level of IFN-γ, IL-12 and TNF-α in blood. Overall, we believe the PDT-immunotherapy strategy has great potential for the treatment of breast cancer, and this work will provide a reference for the clinical application of essential oils in cancer immunotherapy.
Collapse
|
10
|
Liu N, Liu X, Pan J. A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy. J Colloid Interface Sci 2022; 606:1364-1373. [PMID: 34492472 DOI: 10.1016/j.jcis.2021.08.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022]
Abstract
In this paper, a new hexagonal prismatic Zn-MOF is rapidly synthesized at room temperature through a one-step precipitation method as precursor for the preparation of porous carbon. The SEM and GCD tests indicate that the pre-ionization process of BTC greatly accelerates the reaction speed between BTC and Zn ions, and only 0.5 h is required for the preparation of Zn-MOF with orderly morphology at room temperature, far less than 3-24 h of the existing hydrothermal synthesis. The derived porous carbon (BTCC) is provided with a considerable specific surface area of 1,464 m2 g-1 and suitable pores of 3.9 nm in size. Its richly porous structure offers a superior supercapacitor performance. The BTCC electrode offered a high specific capacitance and an excellent cycle stability. Furthermore, the assembled two symmetrical supercapacitors, C|1 M Na2SO4|C and C|6 M KOH|C, provide high energy density of 22.4 Wh kg-1 and 13.7 Wh kg-1, respectively. Their energy retention rates were 80.0% and 89.4%, respectively after 10,000 cycles at 20 A g-1. The proposed pre-ionization strategy is a facile, convenient and easy-to-industrial method for the preparation of new MOFs, thereby significantly reducing the manufacturing cost of porous carbon for energy storage.
Collapse
Affiliation(s)
- Nana Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Liu X, Wang L, Qian F, Qing Z, Xie X, Song Y. Ferric nitrate/dopamine/melamine-derived nitrogen doped carbon material as the activator of peroxymonosulfate to degrade sulfamethoxazole. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Miao R, Sun C, Li J, Sun Y, Chen Y, Pan J, Tang Y, Wan P. A facile morphology tunable strategy of Zn-MOF derived hierarchically carbon materials with enhanced supercapacitive performance through the solvent effect. Dalton Trans 2022; 51:18213-18223. [DOI: 10.1039/d2dt02624d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic framework (MOF) derived porous carbon materials have been widely applied as active materials for supercapacitors due to their large specific surface area and ordered pore structure.
Collapse
Affiliation(s)
- Rui Miao
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaohua Sun
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jipeng Li
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanzhi Sun
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongmei Chen
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Tang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingyu Wan
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Gao X, Pan H, Qiao C, Liu Y, Zhou C, Zhai Q, Hu M, Li S, Jiang Y. Facile preparation of MOF-derived MHCo3O4&Co/C with a hierarchical porous structure for entrapping enzymes: having both high stability and catalytic activity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MHCo3O4&Co/C with hierarchical porous structure are functionally modified with “polydopamine (PDA)” bionic membrane for entrapping horseradate peroxidase (HRP).
Collapse
Affiliation(s)
- Xia Gao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Huibin Pan
- Public Basic Teaching Division, Shangluo Vocational & Technical College, Shangluo 726000, P.R. China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Yongliang Liu
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Chunsheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Quanguo Zhai
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Mancheng Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Shuni Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Yucheng Jiang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| |
Collapse
|
14
|
Qu J, Chu TC, Meng XX, Zhang LY, Li ZX. Coordination Polymer Derived Porous Carbon Activated in Situ by the ZnCl 2 Dot: Capacitances Greatly Enhanced by Redox-Activity Additives in Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14275-14283. [PMID: 34846900 DOI: 10.1021/acs.langmuir.1c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a 1D zinc coordination polymer [Zn(bibp)Cl2]∞ (CP-2-ZX) was assembled from the reaction of 4,4'-bis(imidazol-1-yl)-biphenyl (bibp) with ZnCl2. Through a calcination-thermolysis strategy, sponge-like highly porous carbon AC-Zn-CP was prepared by employing the coralloid sample of CP-2-ZX as the precursor. For comparisons, a series of activated carbon (AC-n) was obtained by the similar heating process on the mixture of bibp with ZnCl2 at different mass ratios. The results illustrate that the atomically dispersed ZnCl2 dot in the 1D chain of CP-2-ZX has an in situ activation effect on the generation of AC-Zn-CP, which can greatly promote the porosity and achieve high-efficiency utilization of ZnCl2. Therefore, the atomically dispersed activating agent provides a new method for environmentally friendly production of porous carbon materials. Significantly, the AC-Zn-CP electrode displays specific capacitance of 215 F g-1 in 3 M KOH solution, which will be largely promoted to 1419 F g-1 in the redox active electrolyte of K3[Fe(CN)6]/KOH. AC-Zn-CP also shows remarkable cycling stability (the capacity retention is 89.0% after 5000 cycles). Moreover, the fabricated symmetric supercapacitor owns a high energy density of 34.8 Wh kg-1 at 785.5 W kg-1. So, the AC-Zn-CP∩K3[Fe(CN)6] system has wide application prospects in supercapacitors.
Collapse
Affiliation(s)
- Jia Qu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Tian-Cheng Chu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Xiao-Xue Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Li-Ying Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zuo-Xi Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| |
Collapse
|
15
|
Zhao Y, Yuan Y, Xu Y, Zheng G, Zhang Q, Jiang Y, Wang Z, Bu N, Xia L, Yan Z. Fine-regulating ultramicropores in porous carbon via a self-sacrificial template route for high-performance supercapacitors. NANOSCALE 2021; 13:1961-1969. [PMID: 33443258 DOI: 10.1039/d0nr07480b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.8-1 nm to occupy the cavity of a porous aromatic framework (PAF). During the heating process, the alkyl chains decompose from the dense architecture as the temperature increased from 500 to 600 °C, forming ∼1 nm micropores. The newly-obtained cavities provide sites for thermal-driven skeleton engineering (700-900 °C) to obtain ultramicropores. Based on the well-defined pore structure, the carbonized PAF solid revealed outstanding electrochemical performances, including high rate and long-term stability in a 6 M KOH electrolyte. Notably, the specific capacitance (294 F g-1) derived from the self-sacrificial template method exceeds the capability of all the other methods for the construction of ultramicropores including self-template strategy, carbonization of nanoparticles, and template-assisted strategy. The synthesis of ultramicroporous carbons via the self-sacrificial template route opens up a promising gate to adjust the porous structure for high-performance applications in supercapacitors.
Collapse
Affiliation(s)
- Yunbo Zhao
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020; 60:11048-11067. [DOI: 10.1002/anie.202010093] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
17
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
18
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Kim HC, Huh S. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4215. [PMID: 32972017 PMCID: PMC7560464 DOI: 10.3390/ma13184215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023]
Abstract
Numerously different porous carbons have been prepared and used in a wide range of practical applications. Porous carbons are also ideal electrode materials for efficient energy storage devices due to their large surface areas, capacious pore spaces, and superior chemical stability compared to other porous materials. Not only the electrical double-layer capacitance (EDLC)-based charge storage but also the pseudocapacitance driven by various dopants in the carbon matrix plays a significant role in enhancing the electrochemical supercapacitive performance of porous carbons. Since the electrochemical capacitive activities are primarily based on EDLC and further enhanced by pseudocapacitance, high-surface carbons are desirable for these applications. The porosity of carbons plays a crucial role in enhancing the performance as well. We have recently witnessed that metal-organic frameworks (MOFs) could be very effective self-sacrificing templates, or precursors, for new high-surface carbons for supercapacitors, or ultracapacitors. Many MOFs can be self-sacrificing precursors for carbonaceous porous materials in a simple yet effective direct carbonization to produce porous carbons. The constituent metal ions can be either completely removed during the carbonization or transformed into valuable redox-active centers for additional faradaic reactions to enhance the electrochemical performance of carbon electrodes. Some heteroatoms of the bridging ligands and solvate molecules can be easily incorporated into carbon matrices to generate heteroatom-doped carbons with pseudocapacitive behavior and good surface wettability. We categorized these MOF-derived porous carbons into three main types: (i) pure and heteroatom-doped carbons, (ii) metallic nanoparticle-containing carbons, and (iii) carbon-based composites with other carbon-based materials or redox-active metal species. Based on these cases summarized in this review, new MOF-derived porous carbons with much enhanced capacitive performance and stability will be envisioned.
Collapse
Affiliation(s)
| | - Seong Huh
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Korea;
| |
Collapse
|
20
|
Fu C, Sun K, Deng Y. Two new mixed-ligand coordination polymers: structural characterization and treatment effect on acute adnexitis via inhibiting fitZ gene expression in Staphylococcus aureus. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1727517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chunfeng Fu
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Sun
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongfang Deng
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Sun JD, Wang YL, Sun LR, Zhang L. Two new mixed-ligand coordination polymers based on the 5-nitro-1,2,3-benzenetricarboxylic acid and different N-donor ligands: crystal structures and anti-leukemia activity. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1727514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jian-Dong Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-Lin Wang
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Rong Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- Department of Oncology, Chongqing Central Hospital, Chongqing, China
| |
Collapse
|
22
|
Wang Z, Guo X, Dou W, Wang K, Mao F, Wu H, Sun C. High supercapacitive performances of Cu-MOFs dominated by morphologies: Effects of solvents, surfactants and concentrations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Xiang G, Meng Y, Qu G, Yin J, Teng B, Wei Q, Xu X. Dual-functional NiCo 2S 4 polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries. Sci Bull (Beijing) 2020; 65:443-451. [PMID: 36747433 DOI: 10.1016/j.scib.2020.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
Dual-functional NiCo2S4 polyhedral architectures with outstanding electrochemical performance for supercapacitors and lithium-ion batteries (LIBs) have been rationally designed and successfully synthesized by a hydrothermal method. The as-synthesized NiCo2S4 electrode for supercapacitor exhibits an outstanding specific capacitance of 1298Fg-1 at 1Ag-1 and an excellent rate capability of ~80.4% at 20Ag-1. Besides, capacitance retention of 90.44% is realized after 8000 cycles. In addition, the NiCo2S4 as anode in LIBs delivers high initial charge/discharge capacities of 807.6 and 972.8mAhg-1 at 0.5C as well as good rate capability. In view of these points, this work provides a feasible pathway for assembling electrodes and devices with excellent electrochemical properties in the next generation energy storage applications.
Collapse
Affiliation(s)
- Guotao Xiang
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Yao Meng
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Guangmeng Qu
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Jiangmei Yin
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Bing Teng
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Qin Wei
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
24
|
Liang KY, Gao F, Jiang Y. Structural characterization and anticancer activity on osteosarcoma of Zn(II) coordination polymer. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1713162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ke-Yong Liang
- Spine Surgery, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Feng Gao
- Spine Surgery, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Yan Jiang
- Cardiovascular Medicine, The First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Gadipelli S, Li Z, Lu Y, Li J, Guo J, Skipper NT, Shearing PR, Brett DJL. Size-Related Electrochemical Performance in Active Carbon Nanostructures: A MOFs-Derived Carbons Case Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901517. [PMID: 31637175 PMCID: PMC6794624 DOI: 10.1002/advs.201901517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Indexed: 05/05/2023]
Abstract
Metal-organic framework-derived carbon nanostructures have generated significant interest in electrochemical capacitors and oxygen/hydrogen catalysis reactions. However, they appear to show considerably varied structural properties, and thus exhibit complex electrochemical-activity relationships. Herein, a series of carbon polyhedrons of different sizes, between 50 nm and µm, are synthesized from zeolitic imidazolate frameworks, ZIF-8 (ZIF-derived carbon polyhedrons, ZDCPs) and their activity is studied for capacitance and the oxygen reduction reaction (ORR). Interestingly, a well-correlated performance relationship with respect to the particle size of ZDCPs is evidenced. Here, the identical structural features, such as specific surface area (SSA), microporosity, and its distribution, nitrogen doping, and graphitization are all strictly maintained in the ZDCPs, thus allowing identification of the effect of particle size on electrochemical performance. Supercapacitors show a capacity enhancement of 50 F g-1 when the ZDCPs size is reduced from micrometers to ≤200 nm. The carbonization further shows a considerable effect on rate capacitance-ZDCPs of increased particle size lead to drastically reduced charge transportability and thus inhibit their performance for both the charge storage and the ORR. Guidelines for the capacitance variation with respect to the particle size and SSA in such carbon nanostructures from literature are presented.
Collapse
Affiliation(s)
- Srinivas Gadipelli
- College of PhysicsSichuan UniversityChengdu610064China
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Zhuangnan Li
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yue Lu
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Juntao Li
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Jian Guo
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Neal T. Skipper
- Department of Physics & AstronomyUniversity College LondonLondonWC1E 6BTUK
| | - Paul R. Shearing
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- The Faraday InstitutionQuad OneHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Dan J. L. Brett
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- The Faraday InstitutionQuad OneHarwell Science and Innovation CampusDidcotOX11 0RAUK
| |
Collapse
|
26
|
Duan HH, Bai CH, Li JY, Yang Y, Yang BL, Gou XF, Yue ML, Li ZX. Temperature-Dependent Morphologies of Precursors: Metal-Organic Framework-Derived Porous Carbon for High-Performance Electrochemical Double-Layer Capacitors. Inorg Chem 2019; 58:2856-2864. [PMID: 30730708 DOI: 10.1021/acs.inorgchem.8b03541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, three Cu metal-organic framework samples with tunable rhombic, squama, and trucated bipyramid morphologies have been synthesized at 0, 25, and 60 °C, respectively, and further employed as precursors to initially prepare Cu@C composites by the calcination-thermolysis procedure. Then Cu@C composites have been etched with HCl and subsequently activated with KOH to obtain activated porous carbon (APC-0, -25, and -60). Interestingly, APC-25 presents a loose multilevel morphology of cabbage and possesses the largest specific surface area (1880.4 m2 g-1) and pore volume (0.81 cm3 g-1) among these APC materials. Consequently, APC-25 also exhibits the highest specific capacitance of 196 F g-1 at 0.5 A g-1, and the corresponding symmetric supercapacitor cell (SSC) achieves a remarkable energy density of 11.8 Wh kg-1 at a power density of 350 W kg-1. Furthermore, APC-25 shows excellent cycling stability, and the loss of capacitance is only 7.7% even after 10000 cycles at 1 A g-1. Significantly, five light-emitting diodes can be lit by six SSCs, which proves that APC-25 can be used in energy storage devices.
Collapse
Affiliation(s)
- Hui-Hui Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Cai-He Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Jia-Yi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Ying Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Bo-Long Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Xiao-Feng Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Man-Li Yue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Zuo-Xi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| |
Collapse
|