1
|
Hagiwara R, Yoshida R, Okeyoshi K. Bioinspired hydrogels: polymeric designs towards artificial photosynthesis. Chem Commun (Camb) 2024; 60:13314-13324. [PMID: 39484781 DOI: 10.1039/d4cc04033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aquatic environments host various living organisms with active molecular systems, such as the enzymes in the thylakoid membrane that realise photosynthesis. Various challenges in achieving artificial photosynthesis, such as water splitting, have been studied using both inorganic and organic molecules. However, several problems persist, including diffusion-limited reactions and multiple redox reactions in the liquid phase. In this Feature Article, we discuss the significant challenges in using polymer networks as active mediators for photoinduced water splitting. In the creation of artificial chloroplasts, polymer networks offer various advantages, such as stable dispersions of multiple types of functional molecules and close molecular arrangements. To incorporate these features, stepwise synthesis and integration can be utilized during the hierarchical construction of polymer networks. The constituent molecules such as ruthenium complex and platinum nanoparticles in the photoinduced electron transfer circuits are closely arranged to smoothly operate forward reactions by polymer networks. The quantum efficiency of photoinduced H2 generation in gel systems is considerably higher than that of conventional solution systems. Additionally, a thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) network of microgels can be used to integrate catalytic nanoparticles into the inside by using the electrostatic interaction and the mesh size changes. By focusing on the redox changes of copolymerised molecules that induce swelling/shrinking at a constant temperature, active electron transfer can be precisely achieved using the coil-globule transition of the PNIPAAm having viologen. This article highlights the potential of polymer networks to develop strategies for active electron transfer and energy conversion systems similar to those found in living organisms.
Collapse
Affiliation(s)
- Reina Hagiwara
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Okeyoshi
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
2
|
Takahashi M, Asatani T, Morimoto T, Kamakura Y, Fujii K, Yashima M, Hosokawa N, Tamaki Y, Ishitani O. Supramolecular multi-electron redox photosensitisers comprising a ring-shaped Re(i) tetranuclear complex and a polyoxometalate. Chem Sci 2023; 14:691-704. [PMID: 36741525 PMCID: PMC9848162 DOI: 10.1039/d2sc04252e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Redox photosensitisers (PSs) play essential roles in various photocatalytic reactions. Herein, we synthesised new redox PSs of 1 : 1 supramolecules that comprise a ring-shaped Re(i) tetranuclear complex with 4+ charges and a Keggin-type heteropolyoxometalate with 4- charges. These PSs photochemically accumulate multi-electrons in one molecule (three or four electrons) in the presence of an electron donor and can supply electrons with different reduction potentials. PSs were successfully applied in the photocatalytic reduction of CO2 using catalysts (Ru(ii) and Re(i) complexes) and triethanolamine as a reductant. In photocatalytic reactions, these supramolecular PSs supply a different number of electrons to the catalyst depending on the redox potential of the intermediate, which is made from the one-electron-reduced species of the catalyst and CO2. Based on these data, information on the reduction potentials of the intermediates was obtained.
Collapse
Affiliation(s)
- Maria Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Tsuyoshi Asatani
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Tatsuki Morimoto
- School of Engineering, Tokyo University of Technology 1404-1 Katakura Hachioji Tokyo 192-0982 Japan
| | - Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Naoki Hosokawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739 8526 Japan
| |
Collapse
|
3
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
4
|
Yang X, Zhang B, Gao Y, Liu C, Li G, Rao B, Chu D, Yan N, Zhang M, He G. Efficient Photoinduced Electron Transfer from Pyrene-o-Carborane Heterojunction to Selenoviologen for Enhanced Photocatalytic Hydrogen Evolution and Reduction of Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101652. [PMID: 34957686 PMCID: PMC8844576 DOI: 10.1002/advs.202101652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/10/2021] [Indexed: 05/03/2023]
Abstract
A series of pyrene or pyrene-o-carborane-appendant selenoviologens (Py-SeV2+ , Py-Cb-SeV2+ ) for enhanced photocatalytic hydrogen evolution reaction (HER) and reduction of alkynes is reported. The efficient photoinduced electron transfer (PET) from electron-rich pyrene-o-carborane heterojunction (Py-Cb) with intramolecular charge transfer (ICT) characteristic to electron-deficient selenoviologen (SeV2+ ) (kET = 1.2 × 1010 s-1 ) endows the accelerating the generation of selenoviologen radical cation (SeV+• ) compared with Py-SeV2+ and other derivatives. The electrochromic/electrofluorochromic devices' (ECD and EFCD) measurements and supramolecular assembly/disassembly processes of SeV2+ and cucurbit[8]uril (CB[8]) results show that the PET process can be finely tuned by electrochemical and host-guest chemistry methods. By combination with Pt-NPs catalyst, the Py-Cb-SeV2+ -based system shows high-efficiency visible-light-driven HER and highly selective phenylacetylene reduction due to the efficient PET process.
Collapse
Affiliation(s)
- Xiaodong Yang
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Bingjie Zhang
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yujing Gao
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Chenjing Liu
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Guoping Li
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Bin Rao
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Dake Chu
- The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Ni Yan
- School of Materials Science & EngineeringEngineering Research Center of Transportation MaterialsMinistry of EducationChang'an UniversityXi'anShaanxi710054P. R. China
| | - Mingming Zhang
- School of Materials Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Gang He
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| |
Collapse
|
5
|
Chowdhury S, Reynard-Feytis Q, Roizard C, Frath D, Chevallier F, Bucher C, Gibaud T. Light-Controlled Aggregation and Gelation of Viologen-Based Coordination Polymers. J Phys Chem B 2021; 125:12063-12071. [PMID: 34677961 DOI: 10.1021/acs.jpcb.1c06090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ditopic bis-(triazole/pyridine)viologens are bidentate ligands that self-assemble into coordination polymers. In such photo-responsive materials, light irradiation initiates photo-induced electron transfer to generate π-radicals that can self-associate to form π-dimers. This leads to a cascade of events: processes at the supramolecular scale associated with mechanical and structural transition at the macroscopic scale. By tuning the irradiation power and duration, we evidence the formation of aggregates and gels. Using microscopy, we show that the aggregates are dense, polydisperse, micron-sized, spindle-shaped particles which grow in time. Using microscopy and time-resolved micro-rheology, we follow the gelation kinetics which leads to a gel characterized by a correlation length of a few microns and a weak elastic modulus. The analysis of the aggregates and the gel states vouch for an arrested phase separation process, a new scenario to supramolecular systems.
Collapse
Affiliation(s)
- Shagor Chowdhury
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Quentin Reynard-Feytis
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Clément Roizard
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Denis Frath
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Floris Chevallier
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Christophe Bucher
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Thomas Gibaud
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, University Claude Bernard, CNRS, F69342 Lyon, France
| |
Collapse
|
6
|
Yoshimura N, Kobayashi A, Yoshida M, Kato M. Enhancement of Photocatalytic Activity for Hydrogen Production by Surface Modification of Pt‐TiO
2
Nanoparticles with a Double Layer of Photosensitizers. Chemistry 2020; 26:16939-16946. [PMID: 33067824 DOI: 10.1002/chem.202003990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Nobutaka Yoshimura
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| |
Collapse
|
7
|
Yamamoto H, Taomoto M, Ito A, Kosumi D. Electron-transfer behaviors between photoexcited metal complex and methyl viologen codoped in ionic nanospheres. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ma DM, Wang J, Guo H, Qian DJ. Photophysical and electrochemical properties of newly synthesized thioxathone–viologen binary derivatives and their photo-/electrochromic displays in ionic liquids and polymer gels. NEW J CHEM 2020. [DOI: 10.1039/c9nj05286k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photo- and electrochromic devices based on thioxathone–viologen derivatives were constructed in ionic liquid and gels, which displayed a good transmittance and reversible colour change behaviour under visible light radiation or a bias of −2.4 V.
Collapse
Affiliation(s)
- Dong-Mei Ma
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Jing Wang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Hao Guo
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Dong-Jin Qian
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
9
|
Skaisgirski M, Larsen CB, Kerzig C, Wenger OS. Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene‐Phenothiazine‐Ruthenium Triad. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Skaisgirski
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christopher B. Larsen
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| |
Collapse
|
10
|
Liu X, Jiang Y, Li Y, Wang Z, Li J, Huo H, Lin K, Du Y. MoP
4
Nanoparticles as a Novel and Efficient Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution. ChemCatChem 2019. [DOI: 10.1002/cctc.201901476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yanqiu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yudong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Zhe Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Junzhuo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Hang Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
11
|
Torres J, Carrión MC, Leal J, Castañeda G, Manzano BR, Jalón FA. Homoleptic ruthenium complexes with N-heterocyclic carbene ligands as photosensitizers in the photocatalytic generation of H2 from water. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Pannwitz A, Wenger OS. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun (Camb) 2019; 55:4004-4014. [DOI: 10.1039/c9cc00821g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced PCET meets catalysis, and the accumulation of multiple redox equivalents is of key importance.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
13
|
Auvray T, Sahoo R, Deschênes D, Hanan GS. Heteroleptic ruthenium bis-terpyridine complexes bearing a 4-(dimethylamino)phenyl donor and free coordination sites for hydrogen photo-evolution. Dalton Trans 2019; 48:15136-15143. [DOI: 10.1039/c9dt02613d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three new ruthenium bis-terpyridine complexes bearing both an internal electron donor and peripheral coordination site(s) are used as photosensitisers in H2 photo-evolution under blue and green light with sustained activity for at least two days.
Collapse
Affiliation(s)
- Thomas Auvray
- Département de Chimie
- Université de Montréal
- Montréal
- Canada
| | - Rakesh Sahoo
- Département de Chimie
- Université de Montréal
- Montréal
- Canada
| | | | - Garry S. Hanan
- Département de Chimie
- Université de Montréal
- Montréal
- Canada
| |
Collapse
|