1
|
Wei P, Duan Y, Wang C, Sun P, Sun N. Co-Assembled Supramolecular Organohydrogels of Amphiphilic Zwitterion and Polyoxometalate with Controlled Microstructures. Molecules 2024; 29:2286. [PMID: 38792147 PMCID: PMC11124011 DOI: 10.3390/molecules29102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.
Collapse
Affiliation(s)
- Peilin Wei
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Yu Duan
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Chen Wang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Panpan Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| |
Collapse
|
2
|
Peng N, Li J, Hua Y, Zhao S, Li G. Lanthanide-Polyoxometalate-Based Film with Reversible Photochromism and Luminescent Switching Properties for Erasable Inkless Security Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7973-7982. [PMID: 38291594 DOI: 10.1021/acsami.3c14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Security printing is of the utmost importance in the information era. However, the excessive use of inks and paper still faces many economic and environmental issues. Thus, developing erasable inkless security printing materials is a remarkable strategy to save resources, protect the environment, and improve information security. To this endeavor, a photoresponsive lanthanide-polyoxometalate-doped gelatin film with high transparency was developed through the solution casting method. Attenuated total reflection Fourier-transform infrared spectroscopy confirmed the electrostatic and hydrogen bond interactions between gelatin and lanthanide-polyoxometalate. Absorption spectra, luminescent spectra, and digital images indicated that the film displayed reversible photochromism behavior and was accompanied by luminescent switching property upon exposure to UV irradiation and oxygen (in the dark) alternately, which allowed its potential application as a reprintable medium for inkless security printing. The printed information can be erased upon exposure to oxygen in the dark, and the film can be reused for printing again. The film exhibited excellent erasability, reprintability, renewability, and low toxicity. In addition, multiple encryption strategies were designed to improve information security. This work offers an attractive alternative strategy for constructing a reprintable film for inkless security printing in terms of simplifying the preparation process, saving resources, and protecting the environment.
Collapse
Affiliation(s)
- Ning Peng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yumei Hua
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Sicong Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (MOE), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Jiang L, Li J, Peng N, Gao M, Fu DY, Zhao S, Li G. Reversible stimuli responsive lanthanide-polyoxometalate-based luminescent hydrogel with shape memory and self-healing properties for advanced information security storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Delineating molecular interactions within surface active ionic liquids + tartrazine dye solutions: A comparative study with conventional surfactant-DTAC. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Li B, Xuan L, Wu L. Polyoxometalate-Containing Supramolecular Gels. Macromol Rapid Commun 2022; 43:e2200019. [PMID: 35102624 DOI: 10.1002/marc.202200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Supramolecular gels are important soft materials with various applications, which are fabricated through hydrogen bonding, π-π stacking, electrostatic or host-guest interactions. Introducing functional groups, especially inorganic components, is an efficient strategy to obtain gels with robust architecture and high performance. Polyoxometalates (POMs), as a class of negatively-charged clusters, have defined structures and multiple interaction sites, resulting in their potential as building blocks for constructing POM-containing supramolecular gels. The introduction of POMs into gels not only provides strong driving forces for the formation of gels due to the characteristics of charged cluster and oxygen-rich surface, but also brings new properties sourcing from unique electronic structures of POMs. Though many POM-containing gels have been reported, a comprehensive review is still absent. Herein, the concept of POM-containing gels is discussed, following with the design strategies and driving forces. To better understand the results in the literature, detailed examples, which are classified into several categories based on the types of organic components, are presented to illustrate the gelation process and gel structures. Moreover, applications of POM-containing gels in energy chemistry, sustainable chemistry and other aspects are also reviewed, as well as the future developments of this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Luyun Xuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Jiang L, Li J, Xia D, Gao M, Li W, Fu DY, Zhao S, Li G. Lanthanide Polyoxometalate Based Water-Jet Film with Reversible Luminescent Switching for Rewritable Security Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49462-49471. [PMID: 34618425 DOI: 10.1021/acsami.1c13898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Luminescent security printing is of particular importance in the information era. However, the use of conventional paper still carries a lot of economic and environmental issues. Therefore, developing new environmentally friendly security printing material with a low cost is imperative. To achieve the aforementioned goals, novel lanthanide polyoxometalate doped gelatin/glycerol films with high transparency, high strength, and good flexibility have been developed via a solution-casting method. The electrostatic interaction between zwitterionic gelatin and polyoxometalate was confirmed by attenuated total reflection Fourier transform infrared spectroscopy. Luminescent spectra and digital images indicated that the films exhibited reversible luminescent switching properties through association and dissociation of hydrogen bonds between glycerol and water molecules, allowing its potential application as water-jet rewritable paper for luminescent security printing. Furthermore, the printed information can be conveniently "erased" by heating, and the film can be reused for printing. The film exhibited excellent ability to be both rewritten and re-erased. A QR code pattern and hybrid printing were employed to improve the security of information. In addition, the rewritable films possessed excellent regeneration ability and low toxicity, as well as good stability against UV irradiation and organic solvents. The water-jet rewritable film based on lanthanide polyoxometalate for luminescent security printing, to the best of our knowledge, has not yet been reported up to date. This work provides an attractive alternative strategy on fabricating rewritable films for luminescent security printing in terms of cutting down the cost, simplifying the preparation process, and protecting the environment.
Collapse
Affiliation(s)
- Lijun Jiang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Diandong Xia
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Min Gao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Weizuo Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Sicong Zhao
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| |
Collapse
|
7
|
Abstract
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Collapse
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. .,Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|
8
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
9
|
Cao H, Hu Y, Xu W, Wang Y, Guo X. Recent progress in the assembly behavior of imidazolium-based ionic liquid surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Liang L, Sun N, Yu Y, Ren S, Wu A, Zheng L. Photoluminescent polymer hydrogels with stimuli-responsiveness constructed from Eu-containing polyoxometalate and imidazolium zwitterions. SOFT MATTER 2020; 16:2311-2320. [PMID: 32051977 DOI: 10.1039/d0sm00082e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic-organic co-assembly of anionic polyoxometalates (POMs) with zwitterions provides a facile way to fabricate functional soft materials. In this paper, a translucent, photoluminescent polymer hydrogel was fabricated from Weakley-type POM Na9EuW10O36 (EuW10) and polymerizable imidazole-type zwitterion 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS) via a one-step synthesis method. Detailed characterization indicated that the polymerization of double bonds in VIPS and electrostatic interactions between EuW10 and VIPS play important roles in the formation of the hydrogels. Additionally, the introduction of non-polymerizable zwitterions 3-(1-methyl-3-imidazolio)propanesulfonate (MIPS) or 3-(1-decyl-3-imidazolio)propanesulfonate (C10IPS) can improve the mechanical and luminous performances of the hydrogels. Especially, C10IPS with a long alkyl chain would more significantly alter the coordination environment of EuW10, and consequently resulted in a more efficient energy transfer process. Further investigations revealed that the chemical environment around the Eu3+ can be highly influenced by organic solvents with stronger coordination abilities than water molecules, such as acetone. The translucency and luminescence intensity of the hydrogels can be reversibly transformed after alternately immersing in acetone or H2O for several minutes. Our results provided a useful strategy for the fabrication of luminescent hydrogels by regulating the noncovalent interactions between POMs and zwitterions.
Collapse
Affiliation(s)
- Liwen Liang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Shujing Ren
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| |
Collapse
|
11
|
Lei N, Feng L, Chen X. Zwitterionic Surfactant Micelle-Directed Self-Assembly of Eu-Containing Polyoxometalate into Organized Nanobelts with Improved Emission and pH Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4370-4379. [PMID: 30813733 DOI: 10.1021/acs.langmuir.9b00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, hybrid coassembly between polyoxometalates (POMs) and cationic building blocks provides an efficient strategy to greatly optimize POMs' functionality as well as their aggregate structural diversity. Adaptive hybrid supramolecular materials with enhanced luminescence have then been obtained from lanthanide-containing POMs. In this work, a commercially available and pH-switchable zwitterionic surfactant, tetradecyldimethylamine oxide (C14DMAO), was chosen to coassemble with a lanthanide-containing anionic POM [Na9(EuW10O36)·32H2O, abbreviated as EuW10] in water. The much improved red-emitting luminescent nanobelts at a C14DMAO/EuW10 molar ratio ( R) of 20 were obtained, which exhibited longer luminescence lifetime and higher quantum yield compared with EuW10 aqueous solution. After careful characterization of morphology and structure of nanobelts, an unusual axial lamellar aggregation arrangement mechanism was proposed. It was the partial protonation of C14DMAO at the solution pH of about 6.5 that led to positively charged micelles, being bridged by anionic EuW10 clusters to aggregate into such novel nanobelts under the synergetic effects of appropriate electrostatic, hydrogen-bonding, and hydrophobic interactions. The resulted pH-responsive luminescent nanobelts and their aggregation model should offer attractive references for preparing smart optical supramolecular materials.
Collapse
Affiliation(s)
- Nana Lei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| |
Collapse
|
12
|
Lei N, Shen D, Chen X. Highly luminescent and multi-sensing aggregates co-assembled from Eu-containing polyoxometalate and an enzyme-responsive surfactant in water. SOFT MATTER 2019; 15:399-407. [PMID: 30601546 DOI: 10.1039/c8sm02276c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid co-assembly of polyoxometalates (POMs) with cationic organic matrices offers a preferable way to greatly enhance POM functionality as well as processability. Thus, multi-stimulus responsive supramolecular materials based on lanthanide-containing POMs with improved luminescence may be fabricated from appropriate components through this convenient strategy. Herein, we reported that the co-assembly of Na9(EuW10O36)·32H2O (EuW10) and a commercially available cationic surfactant, myristoylcholine chloride (Myr), in water could produce enhanced red-emitting luminescent aggregates, with their photophysical properties highly dependent on the molar ratio (R) between Myr and EuW10. The R of 36 was finally selected owing to the displayed superior luminescence intensity and good aggregate stability. The Myr/EuW10 hybrids induced by electrostatic and hydrophobic forces presented practically as multilamellar spheres with diameters varying from 80 to 300 nm. Compared to an aqueous solution of EuW10 nanoclusters, a 12-fold increase in absolute luminescence quantum yield (∼23.3%) was observed for the hybrid spheres, which was ascribed to the efficient shielding of water molecules. An unusual aggregation arrangement mechanism and the excellent photophysical properties of these aggregates were thoroughly investigated. Both the enzyme substrate character of Myr and the sensitive coordination structure of EuW10 to the surrounding environment made Myr/EuW10 aggregates exhibit multi-stimulus responsiveness to enzymes, pH, and transition metal ions, thus providing potential applications in fluorescence sensing, targeted-release, and optoelectronics.
Collapse
Affiliation(s)
- Nana Lei
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
13
|
Crystal Structures and Optical Properties of Two Novel 1,3,5-Trisubstituted Pyrazoline Derivatives. CRYSTALS 2018. [DOI: 10.3390/cryst8120467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two novel 1,3,5-trisubstituted pyrazoline derivatives—1-acetyl-3-(4-methoxyphenyl)-5-(6-methoxy-2-naphthyl)-pyrazoline (2a) and 1-(4-nitrophenyl)-3-(4-methoxyphenyl)-5-(6-methoxy-2-naphtyl)-pyrazoline (2b)—were synthesized and their structures were determined by single crystal X-ray crystallography. Both of the two crystals exhibit twisted structures due to the large dihedral angles between the pyrazolinyl ring and the aromatic ring at the 5-position (88.09° for 2a and 71.26° for 2b). The optical–physical properties of the two compounds were investigated. The fluorescent emission of 2b arises from the 1,3-disubstituted pyrazoline chromophores and exhibits a red shift in polar solvents and solid-state, which could be attributed to photo-induced intramolecular charge transfer (ICT) from N1 to C3 in the pyrazoline moiety and the intermolecular interactions within the crystal. The fluorescent emissions of 2a (λmax 358–364 nm) in solvents and solid-state both come from 6-methoxy-2-naphthyl chromophores, which are fairly insensitive to the solvent polarity.
Collapse
|