1
|
Dong D, Zhao X, Pu C, Yao Y, Zhao B, Tian G, Chang G, Yang X. Hierarchical Amino-Functionalized Ionic Liquids@MOF Composite Gel for Catalytic Conversion of CO 2. Inorg Chem 2023. [PMID: 38019645 DOI: 10.1021/acs.inorgchem.3c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Hybridization of metal-organic frameworks (MOFs) and homogeneous ionic liquids (ILs) endows the heterogeneous composite with high porosity and accessible multiple active sites (e.g., acidic or basic sites), which exhibits great potential in CO2 capture and conversion. Nevertheless, the majority of MOF composites are synthesized as powders, significantly restricting their practical applications due to inherent problems such as poor handling properties, high pressure drops, and mechanical instability. Thus, it is crucial to shape MOF composites into various monoliths that allow efficient processing, especially for industrial purposes. In this work, a hierarchical ILs@nanoMOF composite gel (H-IL@UiO-66-gel) featuring both intraparticle micropores and interparticle mesopores and multiple active sites was successfully fabricated by a two-step approach. Benefiting from the integrated advantages of the hierarchically porous MOF for enhanced mass transfer and affinity of ILs for activating CO2 molecules, the resultant H-IL@UiO-66-gel exhibits excellent uptake of macromolecules and catalytic activity toward CO2 cycloaddition with epoxides under moderate conditions, far beyond the traditional microporous IL@UiO-66-gel and unfunctionalized H-UiO-66-gel. Furthermore, the H-IL@UiO-66 composite monolith can be effortlessly separated and reused at least three times without depletion of catalytic activity. It is believed that this fabrication method for the shaping of MOF composites is highly versatile and can be extended to other types of MOFs for various application fields.
Collapse
Affiliation(s)
- Didi Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xinyu Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Chun Pu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Bo Zhao
- School of Power Engineering, Naval of University of Engineering, Wuhan 430033, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| |
Collapse
|
2
|
Singh G, Prakash K, Nagaraja CM. Fe(III)-Anchored Porphyrin-Based Nanoporous Covalent Organic Frameworks for Green Synthesis of Cyclic Carbonates from Olefins and CO 2 under Atmospheric Pressure Conditions. Inorg Chem 2023; 62:13058-13068. [PMID: 37534594 DOI: 10.1021/acs.inorgchem.3c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The utilization of carbon dioxide (CO2) as a C1 source coupled with olefins, readily accessible feedstocks, offers dual advantages of mitigating atmospheric carbon dioxide and green synthesis of valuable chemicals. In this regard, herein we demonstrate the application of Fe(III)-anchored porphyrin-based covalent organic framework (P-COF) as a promising recyclable catalyst for one-step generation of cyclic carbonates (CCs), value-added commodity chemicals from olefins and CO2, under mild atmospheric pressure conditions. Moreover, this one-pot synthesis was applied to transform various olefins (aliphatic and aromatic) into the corresponding CCs in good yield and selectivity. In addition, the Fe(III)@P-COF showed good recyclability and durability for multiple reuse cycles without losing its catalytic activity. Notably, this one-step synthesis strategy presents an eco-friendly, atom-economic alternative to the conventional two-step process requiring epoxides. This work represents a rare demonstration of porphyrin COF-catalyzed one-pot CC synthesis by utilizing readily available olefins at atmospheric pressure of carbon dioxide.
Collapse
Affiliation(s)
- Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Kamal Prakash
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Shang S, Yang C, Sun M, Tao Z, Hanif A, Gu Q, Shang J. CO2 capture from wet flue gas using transition metal inserted porphyrin-based metal-organic frameworks as efficient adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Balas M, Villanneau R, Launay F. Bibliographic survey of the strategies implemented for the one-pot synthesis of cyclic carbonates from styrene and other alkenes using CO2 and green oxidants. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Chen Y, Wang G, Wang P, Liu J, Shi H, Zhao J, Zeng X, Luo Y. Metal‐Chelatable Porphyrinic Frameworks for Single‐Cell Multiplexing with Mass Cytometry. Angew Chem Int Ed Engl 2022; 61:e202208640. [DOI: 10.1002/anie.202208640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Zijingang Campus of Zhejiang University, Sandun Town, Xihu District Hangzhou Zhejiang 310003 P. R. China
| | - Ping Wang
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Juan Liu
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Hongyu Shi
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Zijingang Campus of Zhejiang University, Sandun Town, Xihu District Hangzhou Zhejiang 310003 P. R. China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
6
|
Rational design of Cu(I)-anchored porous covalent triazine framework (CTF) for simultaneous capture and conversion of CO2 at ambient conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Chen Y, Wang G, Wang P, Liu J, Shi H, Zhao J, Zeng X, Luo Y. Metal‐Chelatable Porphyrinic Frameworks for Single‐Cell Multiplexing with Mass Cytometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuan Chen
- Zhejiang University State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering CHINA
| | - Guocan Wang
- Zhejiang University State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine CHINA
| | - Ping Wang
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Juan Liu
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Hongyu Shi
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Junjie Zhao
- Zhejiang University College of Chemical and Biological Engineering 38 Zheda Rd 310027 Hangzhou CHINA
| | - Xun Zeng
- Zhejiang University State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine CHINA
| | - Yingwu Luo
- Zhejiang University State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering CHINA
| |
Collapse
|
8
|
Das R, Manna SS, Pathak B, Nagaraja CM. Strategic Design of Mg-Centered Porphyrin Metal-Organic Framework for Efficient Visible Light-Promoted Fixation of CO 2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33285-33296. [PMID: 35839282 DOI: 10.1021/acsami.2c07969] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sunlight-driven fixation of CO2 into valuable chemicals constitutes a promising approach toward environmental remediation and energy sustainability over traditional thermal-driven fixation. Consequently, in this article, we report a strategic design and utilization of Mg-centered porphyrin-based metal-organic framework (MOFs) having relevance to chlorophyll in green plants as a visible light-promoted highly recyclable catalyst for the effective fixation of CO2 into value-added cyclic carbonates under ambient conditions. Indeed, the Mg-centered porphyrin MOF showed good CO2 capture ability with a high heat of adsorption (44.5 kJ/mol) and superior catalytic activity under visible light irradiation in comparison to thermal-driven conditions. The excellent light-promoted catalytic activity of Mg-porphyrin MOF has been attributed to facile ligand-to-metal charge transfer transition from the photoexcited Mg-porphyrin unit (SBU) to the Zr6 cluster which in turn activates CO2, thereby lowering the activation barrier for its cycloaddition with epoxides. The in-depth theoretical studies further unveiled the detailed mechanistic path of the light-promoted conversion of CO2 into high-value cyclic carbonates. This study represents a rare demonstration of sunlight-promoted sustainable fixation of CO2, a greenhouse gas into value-added chemicals.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
9
|
Recent Achievements in the Synthesis of Cyclic Carbonates from Olefins and CO2: The Rational Design of the Homogeneous and Heterogeneous Catalytic System. Catalysts 2022. [DOI: 10.3390/catal12050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
With the consumption of fossil fuels, the level of CO2 in the atmosphere is growing rapidly, which leads to global warming. Hence, the chemical conversion of CO2 into high value-added products is one of the most important approaches to reducing CO2 emissions. Due to being simple, inexpensive and environmentally friendly, the direct synthesis of cyclic carbonates from olefins and CO2 is a promising project for industrial application. In this review, we discuss the design of the homogeneous and heterogeneous catalytic system for the synthesis of cyclic carbonates from the reaction of olefins and CO2. Usually, the catalyst contains the epoxidation active site and the cycloaddition active site, which could achieve the oxidation of oleifins and the CO2-insert, respectively. This review will provide a comprehensive overview of the direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by homogeneous and heterogeneous catalysts. The focus mainly lies on the rational fabrication of multifunctional catalysts, and provides a new perspective for the design of catalysts.
Collapse
|
10
|
Long G, Su K, Dong H, Zhao T, Yang C, Liu F, Hu X. Straightforward construction of amino-functionalized ILs@SBA-15 catalysts via mechanochemical grafting for one-pot synthesis of cyclic carbonates from aromatic olefins and CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
A novel conjugated microporous polymer microspheres comprising cobalt porphyrins for efficient catalytic CO2 cycloaddition under ambient conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Gu JX, Chen H, Ren Y, Gu ZG, Li G, Xu WJ, Yang XY, Wen JX, Wu JT, Jin HG. A Novel Cerium(IV)-Based Metal-Organic Framework for CO 2 Chemical Fixation and Photocatalytic Overall Water Splitting. CHEMSUSCHEM 2022; 15:e202102368. [PMID: 34766733 DOI: 10.1002/cssc.202102368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Cerium (IV)-based metal-organic frameworks (MOFs) are highly desirable due to their unique potential in fields such as redox catalysis and photocatalysis. However, due to the high reduction potential of CeIV species in solution, it is still a great challenge to synthesize CeIV -MOFs with novel structures, which are extremely dominated by the hexanuclear Ce-O cluster inorganic building units (IBUs). Herein, a Ce-O IBU chain containing CeIV -MOF, CSUST-3 (CSUST: Changsha University of Science and Technology), was successfully prepared using the kinetic stabilization study of UiO-66(Ce)-NDC (H2 NDC=2,6-naphthalenedicarboxylic acid). Furthermore, owing to the superior redox activity, Lewis acidity and semiconductor-like behavior owing to Ce4+ , activated CSUST-3 was demonstrated to be an excellent catalyst for CO2 chemical fixation. One-pot synthesis of styrene carbonate from styrene and CO2 was achieved under mild conditions (1 atm CO2 , 80 °C, and solvent free). Moreover, activated CSUST-3 was shown to be a remarkable co-catalyst-free photocatalyst for overall water splitting (OWS), rendering 59 μmol g-1 h-1 of H2 and 22 μmol g-1 h-1 of O2 under simulated sunlight irradiation (Na2 S-Na2 SO3 as sacrificial agent).
Collapse
Affiliation(s)
- Jia-Xin Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Hao Chen
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Ren
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Zhi-Gang Gu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangli Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Wen-Jie Xu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xin-Yu Yang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Jian-Xin Wen
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Jing-Tao Wu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Hong-Guang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| |
Collapse
|
13
|
Gorbunova YG, Enakieva YY, Volostnykh MV, Sinelshchikova AA, Abdulaeva IA, Birin KP, Tsivadze AY. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Das R, Parihar V, Nagaraja CM. Strategic design of a bifunctional Ag( i)-grafted NHC-MOF for efficient chemical fixation of CO 2 from a dilute gas under ambient conditions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00479h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile grafting of catalytically active Ag(i) into CO2-philic NHC-MOF for simultaneous capture and conversion of CO2 from dilute gas to value-added α-alkylidene cyclic carbonate and oxazolidinones under mild conditions is demonstrated.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Vaibhav Parihar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C. M. Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
15
|
Ghosh S, Nagarjun N, Alam M, Dhakshinamoorthy A, Biswas S. Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Han F, Li H, Zhuang H, Hou Q, Yang Q, Zhang B, Miao C. Direct synthesis of cyclic carbonates from olefins and CO2: Single- or multi-component catalytic systems via epoxide or halohydrin intermediate. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Singh G, Nagaraja C. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Hong Y, Rozyyev V, Yavuz CT. Alkyl‐Linked Porphyrin Porous Polymers for Gas Capture and Precious Metal Adsorption. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yeongran Hong
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Vepa Rozyyev
- Graduate School of EEWS KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- Pritzker School of Molecular Engineering The University of Chicago 5640 South Ellis Avenue Chicago IL 60637 USA
| | - Cafer T. Yavuz
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- Graduate School of EEWS KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- Advanced Membranes and Porous Materials Center (AMPM) Division of Physical Sciences and Engineering (PSE) King Abdullah University of Science and Technology (KAUST) 5640 South Ellis Avenue Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
20
|
Cui M, Shamsa F. Ionic Liquid Supported on DFNS Nanoparticles Catalyst in Synthesis of Cyclic Carbonates by Oxidative Carboxylation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03616-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kong X, Hu K, Mei L, Wu Q, Huang Z, Liu K, Chai Z, Nie C, Shi W. Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chemistry 2021; 27:2124-2130. [PMID: 33151581 DOI: 10.1002/chem.202004344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Six hybrid uranyl-transition metal compounds [UO2 Ni(cptpy)2 (HCOO)2 (DMF)(H2 O)] (1), [UO2 Ni(cptpy)2 (BTPA)2 ] (2), [UO2 Fe(cptpy)2 (HCOO)2 (DMF)(H2 O)] (3), [UO2 Fe(cptpy)2 (BTPA)2 ] (4), [UO2 Co(cptpy)2 (HCOO)2 (DMF)(H2 O)] (5), and [UO2 Co(cptpy)2 (BTPA)2 ] (6), based on bifunctional ligand 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine (Hcptpy) are reported (H2 BTPA = 4,4'-biphenyldicarboxylic acid). Single-crystal XRD revealed that all six compounds feature similar metalloligands, which consist of two cptpy- anions and one transition metal cation. The metalloligand M(cptpy)2 can be considered to be an extended linear dicarboxylic ligand with length of 22.12 Å. Compounds 1, 3, and 5 are isomers, and all of them feature 1D chain structures. The adjacent 1D chains are connected together by hydrogen bonds and π-π interactions to form a 3D porous structure, which is filled with solvent molecules and can be exchanged with I2 . Compounds 2, 4, and 6 are also isomers, and all of them feature 2D honeycomb (6,3) networks with hexagonal units of dimensions 41.91×26.89 Å, which are the largest among uranyl compounds with honeycomb networks. The large aperture allows two sets of equivalent networks to be entangled together to result in a 2D+2D→3D polycatenated framework. Remarkably, these uranyl compounds exhibit high catalytic activity for cycloaddition of carbon dioxide. Moreover, the geometric and electronic structures of compounds 1 and 2 are systematically discussed on the basis of DFT calculations.
Collapse
Affiliation(s)
- Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Resource and Environment and Safety Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Changming Nie
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
22
|
Huang ZW, Hu KQ, Mei L, Wang CZ, Chen YM, Wu WS, Chai ZF, Shi WQ. Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorg Chem 2021; 60:651-659. [PMID: 33382238 DOI: 10.1021/acs.inorgchem.0c02473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability of many MOFs is not satisfactory, which severely limits the exploration of their potential applications. Given this, we have proposed a strategy to improve the stability of MOFs by introducing alkali metal K+ capable of coordinating with metal nodes, which finally induces the interpenetrating uranyl-porphyrin framework to connect as a whole (IHEP-9). The stability experiments reveal that the IHEP-9 has good thermal stability up to 400 °C and can maintain its crystalline state in the aqueous solution with pH ranging from 2 to 11. The catalytic activity of IHEP-9 as a heterogeneous photocatalyst for CO2 cycloaddition under the driving of visible light at room temperature is also demonstrated. This induced interpenetration and fixation method may be promising for the fabrication of more functional MOFs with improved structural stability.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China.,Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Mei Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Fang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Das R, Muthukumar D, Pillai RS, Nagaraja CM. Rational Design of a Zn II MOF with Multiple Functional Sites for Highly Efficient Fixation of CO 2 under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry 2020; 26:17445-17454. [PMID: 32767456 DOI: 10.1002/chem.202002688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Indexed: 02/06/2023]
Abstract
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4'-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF1) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2 -philic (-NH2 and -CF3 ) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2 ). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - D Muthukumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - C Mallaiah Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
24
|
Argent SP, da Silva I, Greenaway A, Savage M, Humby J, Davies AJ, Nowell H, Lewis W, Manuel P, Tang CC, Blake AJ, George MW, Markevich AV, Besley E, Yang S, Champness NR, Schröder M. Porous Metal-Organic Polyhedra: Morphology, Porosity, and Guest Binding. Inorg Chem 2020; 59:15646-15658. [PMID: 33044820 PMCID: PMC7610226 DOI: 10.1021/acs.inorgchem.0c01935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Designing
porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial
goal which requires an understanding of the host–guest interactions
involved at the atomic scale. Metal–organic polyhedra (MOPs)
showing permanent porosity upon desolvation are rarely observed. We
report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities
between packed cages rather than from within the polyhedra. Thus,
for Cu-1a, the void fraction outside the cages totals
56% with only 2% within. The relative stabilities of these MOP structures
are rationalized by considering their weak nondirectional packing
interactions using Hirshfeld surface analyses. The exceptional stability
of Cu-1a enables a detailed structural investigation
into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT
calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open
metal sites and pockets defined by the faces of phenyl rings. More
importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed
CO2 molecule and the Cu(II)-bound water molecule, shedding
light on previous empirical and theoretical observations that partial
hydration of metal−organic framework (MOF) materials containing
open metal sites increases their uptake of CO2. The results
of the crystallographic study on MOP–gas binding have been
rationalized using DFT calculations, yielding individual binding energies
for the various pore environments of Cu-1a. We report a family of metal−organic polyhedra (MOP),
which derive their permanent porosity from cavities between packed
cages rather than from within the polyhedra. The relative stabilities
of these MOP structures are rationalized by considering their weak
nondirectional packing interactions using Hirshfeld surface analysis.
A detailed structural investigation into the adsorption of CO2 and CH4 is reported using in situ X-ray and neutron diffraction, coupled with DFT calculations.
Collapse
Affiliation(s)
- Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, U.K
| | - Alex Greenaway
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,R92 Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0DE, U.K
| | - Mathew Savage
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jack Humby
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew J Davies
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Harriott Nowell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, U.K
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Alexander J Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Michael W George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Alexander V Markevich
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - Elena Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Sihai Yang
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Neil R Champness
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Martin Schröder
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
25
|
|
26
|
The Synthesis of Cyclic Carbonates from Oxidative Carboxylation Under Mild Conditions Using Al/FPS Nanocatalyst. Catal Letters 2020. [DOI: 10.1007/s10562-020-03315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Das R, Nagaraja CM. Highly Efficient Fixation of Carbon Dioxide at RT and Atmospheric Pressure Conditions: Influence of Polar Functionality on Selective Capture and Conversion of CO2. Inorg Chem 2020; 59:9765-9773. [DOI: 10.1021/acs.inorgchem.0c00987] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C. M. Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
28
|
Abassian M, Zhiani R, Motavalizadehkakhky A, Eshghi H, Mehrzad J. A new class of organoplatinum-based DFNS for the production of cyclic carbonates from olefins and CO 2. RSC Adv 2020; 10:15044-15051. [PMID: 35495475 PMCID: PMC9052291 DOI: 10.1039/d0ra01696a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
We studied the potential application of an efficient, reusable, and easily recoverable catalyst of dendritic fibrous nanosilica (DFNS)-supported platinum(ii) complexes (DFNS/Pt(ii) NPs) to form cyclic carbonates in the presence of epoxides by converting carbon dioxide. Cyclic carbonates from epoxides and carbon dioxide is proposed as the most appropriate way to synthesis this C1 building block. We performed FE-SEM, TEM, TGA, BET, VSM, and ICP-MS to thoroughly characterize DFNS/Pt(ii) NPs. We studied the potential application of an efficient, reusable, and easily recoverable catalyst of dendritic fibrous nanosilica (DFNS)-supported platinum(ii) complexes (DFNS/Pt(ii) NPs) to form cyclic carbonates in the presence of epoxides by converting carbon dioxide.![]()
Collapse
Affiliation(s)
- Maryam Abassian
- Department of Chemistry, Faculty of Science, Islamic Azad University Neyshabur Branch Neyshabur Iran
| | - Rahele Zhiani
- New Materials Technology and Processing Research Center, Department of Chemistry, Islamic Azad University Neyshabur Branch Neyshabur Iran
| | | | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Faculty of Science, Islamic Azad University Neyshabur Branch Neyshabur Iran
| |
Collapse
|
29
|
Younis SA, Lim DK, Kim KH, Deep A. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Adv Colloid Interface Sci 2020; 277:102108. [PMID: 32028075 DOI: 10.1016/j.cis.2020.102108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the coordination of the porphyrin ligand and its derivatives however remains a challenge for engineering new tunable Porph-MOF frameworks by self-assembly methods. The key challenges exist in the following respects: (i) collapse of the large open pores of Porph-MOFs during synthesis, (ii) deactivation of unsaturated metal-sites (UMCs) by axial coordination, and (iii) the tendency of both coordinated moieties (at peripheral meso- and beta-carbon sites) and the N4-pyridine core to coordinate with metal cations. In this respect, this review covers the advances in the design of Porph-MOFs relative to their counterpart covalent organic frameworks (Porph-COFs). The potential utility of custom-designed porphyrin/metalloporphyrins ligands is highlighted. Synthesis strategies of Porph-MOFs are also illustrated with modular design of hybrid guest@host composites (either Porph@MOFs or guest@Porph-MOFs) with exceptional topologies and stability. This review summarizes the synergistic benefits of coordinated porphyrin ligands and functional guest molecules in Porph-MOF composites for enhanced catalytic performance in various redox applications. This review shed lights on the engineering of new tunable hetero-metals open active sites within (metallo)porphyrin-MOFs as out-of-the-box platforms for enhanced catalytic processes in chemical and biological media.
Collapse
Affiliation(s)
- Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt; Liquid Chromatography and Water Unit, EPRI-Central Laboratories, Nasr City, 11727 Cairo, Egypt
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University,145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
30
|
Gupta V, Mandal SK. A Highly Stable Triazole‐Functionalized Metal–Organic Framework Integrated with Exposed Metal Sites for Selective CO
2
Capture and Conversion. Chemistry 2020; 26:2658-2665. [DOI: 10.1002/chem.201903912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Vijay Gupta
- Department of Chemical SciencesIndian Institute of Science Education and Research Mohali Sector 81, Manauli PO, S.A.S. Nagar Mohali Punjab 140306 India
| | - Sanjay K. Mandal
- Department of Chemical SciencesIndian Institute of Science Education and Research Mohali Sector 81, Manauli PO, S.A.S. Nagar Mohali Punjab 140306 India
| |
Collapse
|
31
|
MOFs-Based Catalysts Supported Chemical Conversion of CO2. Top Curr Chem (Cham) 2020; 378:11. [DOI: 10.1007/s41061-019-0269-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022]
|
32
|
Dhankhar SS, Nagaraja CM. Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO2. NEW J CHEM 2020. [DOI: 10.1039/d0nj01448f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rational construction of three new 3D lanthanide-based MOFs exhibiting selective CO2 capture and conversion to value-added cyclic carbonates under mild conditions is reported.
Collapse
Affiliation(s)
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
33
|
Sharma N, Dey AK, Sathe RY, Kumar A, Krishnan V, Kumar TJD, Nagaraja CM. Highly efficient visible-light-driven reduction of Cr(vi) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00969e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Highly efficient visible-light-assisted photocatalytic reduction of Cr(vi) to Cr(iii) from aqueous phase using Zr(iv)-porphyrin MOFs, Zr6(μ3-OH)8(OH)8(MTCPP)2, (PCN-222(M)) (M = H2, ZnII, CuII, NiII, CoII, FeIIICl, and MnIIICl) is presented.
Collapse
Affiliation(s)
- Nayuesh Sharma
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | - Arnab Kumar Dey
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | - Rohit Y. Sathe
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research Center
- Indian Institute of Technology Mandi
- Mandi 175075
- India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center
- Indian Institute of Technology Mandi
- Mandi 175075
- India
| | - T. J. Dhilip Kumar
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
34
|
Das R, Dhankhar SS, Nagaraja CM. Construction of a bifunctional Zn(ii)–organic framework containing a basic amine functionality for selective capture and room temperature fixation of CO2. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01058k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The construction of a novel 3D, porous, bifunctional Zn(ii)–organic framework featuring two-types of 1D channels for efficient fixation of CO2 to cyclic carbonates under solvent-free mild conditions of RT is reported.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | | | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
35
|
Wang L, Que S, Ding Z, Vessally E. Oxidative carboxylation of olefins with CO2: environmentally benign access to five-membered cyclic carbonates. RSC Adv 2020; 10:9103-9115. [PMID: 35496570 PMCID: PMC9050038 DOI: 10.1039/c9ra10755j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this focus review is to provide a comprehensive overview of the direct synthesis of five-membered cyclic carbonates via oxidative carboxylation of the corresponding olefins and carbon dioxide with particular attention on the mechanistic features of the reactions. The review is divided into two main sections. The first section is a discussion of the single-step reactions, while the second consists of an overview of one-pot, two-step sequential reactions. This review provides an overview of the direct synthesis of five-membered cyclic carbonates via oxidative carboxylation of the corresponding olefins and carbon dioxide.![]()
Collapse
Affiliation(s)
- Liang Wang
- State Key Lab of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
| | - Sisi Que
- State Key Lab of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- State Key Laboratory of Coal Resources in Western China
| | - Ziwei Ding
- State Key Laboratory of Coal Resources in Western China
- Xi'an University of Science and Technology
- Xi'an
- China
| | | |
Collapse
|
36
|
Ugale B, Kumar S, Dhilip Kumar TJ, Nagaraja CM. Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO2 at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal–Organic Frameworks. Inorg Chem 2019; 58:3925-3936. [DOI: 10.1021/acs.inorgchem.8b03612] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bharat Ugale
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - T. J. Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C. M. Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
37
|
Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 2019; 48:2783-2828. [DOI: 10.1039/c8cs00829a] [Citation(s) in RCA: 1089] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarizes recent advances and highlights the structure–property relationship on metal–organic framework-based materials for carbon dioxide capture and conversion.
Collapse
Affiliation(s)
- Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Robinson W. Flaig
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Omar M. Yaghi
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
38
|
Li Y, Zhang X, Xu P, Jiang Z, Sun J. The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01150h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Zn(PZDC)(ATZ) with Lewis acid–base sites exhibited strong resistance to acids/alkalis and moisture and possessed high catalytic activity for CO2 transformation.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Zimin Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
39
|
Fan Y, Li X, Gao K, Liu Y, Meng X, Wu J, Hou H. Co(ii)-cluster-based metal–organic frameworks as efficient heterogeneous catalysts for selective oxidation of arylalkanes. CrystEngComm 2019. [DOI: 10.1039/c8ce02151a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three Co-cluster-based metal–organic frameworks were designed and their catalytic activities for the selective oxidation of arylalkanes were explored.
Collapse
Affiliation(s)
- Yanru Fan
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Xiao Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Kuan Gao
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yu Liu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Xiangru Meng
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Jie Wu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Hongwei Hou
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
40
|
Dhankhar SS, Nagaraja CM. Construction of a 3D porous Co(ii) metal–organic framework (MOF) with Lewis acidic metal sites exhibiting selective CO2 capture and conversion under mild conditions. NEW J CHEM 2019. [DOI: 10.1039/c8nj04947e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of a 3D Co(ii)-MOF as a recyclable heterogeneous catalyst for conversion of CO2 to cyclic carbonates is reported.
Collapse
Affiliation(s)
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
41
|
Dhankhar SS, Sharma N, Nagaraja CM. Construction of bifunctional 2-fold interpenetrated Zn(ii) MOFs exhibiting selective CO2 adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00044e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of Zn(ii) MOFs, [{Zn(BINDI)0.5(bpa)0.5(H2O)}·4H2O]n (MOF1) and [{Zn(BINDI)0.5(bpe)}·3H2O]n (MOF2) for selective CO2 storage and aqueous-phase detection of TNP is demonstrated.
Collapse
Affiliation(s)
| | - Nayuesh Sharma
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| |
Collapse
|