1
|
Michenfelder RT, Pashley‐Johnson F, Guschin V, Delafresnaye L, Truong VX, Wagenknecht H, Barner‐Kowollik C. Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402011. [PMID: 38852174 PMCID: PMC11304248 DOI: 10.1002/advs.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Indexed: 06/11/2024]
Abstract
The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.
Collapse
Affiliation(s)
- Rita T. Michenfelder
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC) and Laboratory of Organic SynthesisDepartment of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Viktor Guschin
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Laura Delafresnaye
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
| | - Vinh X. Truong
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Round, Jurong IslandSingapore627833Republic of Singapore
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
2
|
Hamerla C, Mondal P, Hegger R, Burghardt I. Controlled destabilization of caged circularized DNA oligonucleotides predicted by replica exchange molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:26132-26144. [PMID: 37740309 DOI: 10.1039/d3cp02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Spatiotemporal control is a critical issue in the design of strategies for the photoregulation of oligonucleotide activity. Efficient uncaging, i.e., activation by removal of photolabile protecting groups (PPGs), often necessitates multiple PPGs. An alternative approach is based on circularization strategies, exemplified by intrasequential circularization, also denoted photo-tethering, as introduced in [Seyfried et al., Angew. Chem., Int. Ed., 2017, 56, 359]. Here, we develop a computational protocol, relying on replica exchange molecular dynamics (REMD), in order to characterize the destabilization of a series of circularized, caged DNA oligonucleotides addressed in the aforementioned study. For these medium-sized (32 nt) oligonucleotides, melting temperatures are computed, whose trend is in good agreement with experiment, exhibiting a large destabilization and, hence, reduction of the melting temperature of the order of ΔTm ∼ 30 K as compared with the native species. The analysis of free energy landscapes confirms the destabilization pattern experienced by the circularized oligonucleotides. The present study underscores that computational protocols that capture controlled destabilization and uncaging of oligonucleotides are promising as predictive tools in the tailored photocontrol of nucleic acids.
Collapse
Affiliation(s)
- Carsten Hamerla
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Panguru (G.P), Yerpedu Mandal, 517619 - Tirupati Dist., Andhra Pradesh, India
| | - Rainer Hegger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Kaufmann J, Sinsel F, Heckel A. Chromatic Selectivity of Coumarin-Caged Oligonucleotides. Chemistry 2023; 29:e202204014. [PMID: 36562762 DOI: 10.1002/chem.202204014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
A system of two coumarin-based caging groups is presented - one absorbing in the blue (400-450 nm) and the other absorbing in the green (480-550 nm) part of the visible spectrum. Together they form a pair, which allows to selectively photoactivate the one or the other in oligonucleotides. A numerical characterization defining the term "chromatic selectivity" was proposed, and it was shown how chromatically selective uncaging can literally be titrated in a kinetic reaction scheme.
Collapse
Affiliation(s)
- Janik Kaufmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Fabian Sinsel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| |
Collapse
|
4
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
5
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Xu X, Xiao L, Gu C, Shang J, Xiang Y. Wavelength-Selective Activation of Photocaged DNAzymes for Metal Ion Sensing in Live Cells. ACS OMEGA 2021; 6:13153-13160. [PMID: 34056465 PMCID: PMC8158819 DOI: 10.1021/acsomega.1c00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
RNA-cleaving DNAzymes are widely applied as sensors for detecting metal ions in environmental samples owing to their high sensitivity and selectivity, but their use for sensing biological metal ions in live cells is challenging because constitutive sensors fail to report the spatiotemporal heterogeneity of biological processes. Photocaged DNAzymes can be activated by light for sensing purposes that need spatial and temporal resolution. Studying complex biological processes requires logic photocontrol, but unfortunately all the literature-reported photocaged DNAzymes working in live cells cannot be selectively controlled by light irradiation at different wavelengths. In this work, we developed photocaged DNAzymes responsive to UV and visible light using a general synthetic method based on phosphorothioate chemistry. Taking the Zn2+-dependent DNAzyme sensor as a model, we achieved wavelength-selective activation of photocaged DNAzymes in live human cells by UV and visible light, laying the groundwork for the logic activation of DNAzyme-based sensors in biological systems.
Collapse
|
7
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
8
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proc Natl Acad Sci U S A 2020; 117:12080-12086. [PMID: 32430319 DOI: 10.1073/pnas.2003425117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.
Collapse
|
10
|
Heinz M, Erlenbach N, Stelzl LS, Thierolf G, Kamble NR, Sigurdsson ST, Prisner TF, Hummer G. High-resolution EPR distance measurements on RNA and DNA with the non-covalent Ǵ spin label. Nucleic Acids Res 2020; 48:924-933. [PMID: 31777925 PMCID: PMC6954412 DOI: 10.1093/nar/gkz1096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) experiments, among them most prominently pulsed electron-electron double resonance experiments (PELDOR/DEER), resolve the conformational dynamics of nucleic acids with high resolution. The wide application of these powerful experiments is limited by the synthetic complexity of some of the best-performing spin labels. The recently developed $\bf\acute{G}$ (G-spin) label, an isoindoline-nitroxide derivative of guanine, can be incorporated non-covalently into DNA and RNA duplexes via Watson-Crick base pairing in an abasic site. We used PELDOR and molecular dynamics (MD) simulations to characterize $\bf\acute{G}$, obtaining excellent agreement between experiments and time traces calculated from MD simulations of RNA and DNA double helices with explicitly modeled $\bf\acute{G}$ bound in two abasic sites. The MD simulations reveal stable hydrogen bonds between the spin labels and the paired cytosines. The abasic sites do not significantly perturb the helical structure. $\bf\acute{G}$ remains rigidly bound to helical RNA and DNA. The distance distributions between the two bound $\bf\acute{G}$ labels are not substantially broadened by spin-label motions in the abasic site and agree well between experiment and MD. $\bf\acute{G}$ and similar non-covalently attached spin labels promise high-quality distance and orientation information, also of complexes of nucleic acids and proteins.
Collapse
Affiliation(s)
- Marcel Heinz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Grace Thierolf
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Nilesh R Kamble
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavk, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavk, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Takeshita L, Yamada Y, Masaki Y, Seio K. Synthesis of Deoxypseudouridine 5'-Triphosphate Bearing the Photoremovable Protecting Group at the N1 Position Capable of Enzymatic Incorporation to DNA. J Org Chem 2020; 85:1861-1870. [PMID: 31910013 DOI: 10.1021/acs.joc.9b02194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic incorporation of deoxynucleoside 5'-triphosphate bearing the photocleavable protecting group is a useful method for the preparation of photocaged oligodeoxynucleotides. Here, we describe the synthesis of new photocaged deoxynucleoside triphosphates N1-(2-nitrobenzyl)-deoxypseudouridine triphosphate (dNBΨTP) and N1-(6-nitropiperonyloxymethyl)-deoxypseudouridine triphosphate (dNPOMΨTP). We successfully synthesized dNBΨTP and dNPOMΨTP and applied them to enzymatic synthesis of photocaged oligonucleotides. In addition, we also synthesized phosphoramidites of N1-(2-nitrobenzyl)- and N1-(6-nitropiperonyloxymethyl)-deoxypseudouridine to enable chemical synthesis of photocaged oligonucleotides incorporating them. The photocleavable 2-nitrobenzyl and 6-nitropiperonyloxymethyl in oligonucleotides were cleaved by irradiation at 365 nm for 30 and 10 s, respectively. We also studied the enzymatic incorporation of dNBΨTP and dNPOMΨTP using the Klenow fragment exo-. As a result, it was clarified that dNPOMΨTP could be incorporated to oligonucleotide 193 times more efficiently than dNBΨTP, as judged by Vmax/Km. We also performed the incorporation of at least eight dNPOMΨ residues in a 35-mer oligodeoxynucleotide. It has also been revealed that the oligodeoxynucleotides incorporating photocaged deoxypseudouridine were useful for photocontrol of DNA triplex formation.
Collapse
Affiliation(s)
- Leo Takeshita
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Yuji Yamada
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Kohji Seio
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| |
Collapse
|
12
|
Müller P, Seyfried P, Frühauf A, Heckel A. Phosphodiester photo-tethers for the (multi-)cyclic conformational caging of oligonucleotides. Methods Enzymol 2019; 624:89-111. [PMID: 31370937 DOI: 10.1016/bs.mie.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to address the function of oligonucleotides with light is highly desirable since they are often used experimentally in the regulation of biological processes that need to be controlled in time, space and activation level. Here we present an extension of our initial approach of using photo-tethers that force single strands of nucleic acids into a circle, thus making them unable to form a duplex with a complementary DNA- or RNA-strand. Due to the persistence length a single strand can form a circle of, for example, 30 nucleotides, but a duplex cannot. We show that these new photo-tethers can also be easily installed on the phosphodiester backbone. This simplifies the approach considerably and leads to temporarily inhibited oligonucleotides that can only form a duplex after linearization by photoactivation.
Collapse
Affiliation(s)
- Patricia Müller
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Seyfried
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anton Frühauf
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|