1
|
Congost-Escoin P, Lucherelli MA, Oestreicher V, García-Lainez G, Alcaraz M, Mizrahi M, Varela M, Andreu I, Abellán G. Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials. NANOSCALE 2024; 16:9754-9769. [PMID: 38625086 PMCID: PMC11112653 DOI: 10.1039/d4nr00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Pnictogen nanomaterials have recently attracted researchers' attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK and HEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.
Collapse
Affiliation(s)
- Pau Congost-Escoin
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Matteo Andrea Lucherelli
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Víctor Oestreicher
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Guillermo García-Lainez
- Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Alcaraz
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| | - Martín Mizrahi
- Instituto de Investigaciones Fisicoquímicas Técnicas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64, 1900, La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900, La Plata, Argentina
| | - Maria Varela
- Instituto Pluridisciplinar & Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Inmaculada Andreu
- Departamento de Química-Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
- Unidad Mixta de Investigación. Universitat Politècnica de València -Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Spain.
| |
Collapse
|
2
|
Neziri E, Zhang W, Smogunov A, Mayne AJ, Kara A, Dappe YJ, Oughaddou H. Structural properties of Bi/Au(110). NANOTECHNOLOGY 2023; 34:235601. [PMID: 36848665 DOI: 10.1088/1361-6528/acbf55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Atomically thin bismuth films (2D Bi) are becoming a promising research area due to their unique properties and their wide variety of applications in spintronics, electronic and optoelectronic devices. We report on the structural properties of Bi on Au(110), explored by low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. At a Bi coverage lower than one monolayer (1 ML) various reconstructions are observed, we focus on Bi/Au(110)-c(2 × 2) reconstruction (at 0.5 ML) and Bi/Au(110)-(3 × 3) structure (at 0.66 ML). We propose models for both structures based on STM measurements and further confirm by DFT calculations.
Collapse
Affiliation(s)
- Egzona Neziri
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France
| | - Wei Zhang
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France
| | - Alexander Smogunov
- Université Paris-Saclay, CNRS, CEA, Service de Physique de l'Etat Condensé, F-91191 Gif-sur Yvette, France
| | - Andrew J Mayne
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France
| | - Abdelkader Kara
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
- IRMC, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yannick J Dappe
- Université Paris-Saclay, CNRS, CEA, Service de Physique de l'Etat Condensé, F-91191 Gif-sur Yvette, France
| | - Hamid Oughaddou
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France
- Département de Physique, CY Cergy Paris Université, F-95031 Cergy-Pontoise Cedex, France
| |
Collapse
|
3
|
Varzandeh M, Varshosaz J, Labbaf S, Esmaeil N. Sodium-borohydride exfoliated bismuthene loaded with Mitomycin C for chemo-photo-radiotherapy of triple negative breast cancer. Int J Pharm 2023; 636:122825. [PMID: 36921740 DOI: 10.1016/j.ijpharm.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
In current study, a new remotely controlled drug delivery, radio-sensitizing, and photothermal therapy agent based on thioglycolic acid modified bismuth nanosheets is thoroughly evaluated. Bismuth nanosheets were synthesized using sodium borohydride (NaBH4) and Tween 20 through low energy (400 W) sonication within 2 h. The resultant nanosheets were 40-60 nm in size and 1-3 atomic layers in thickness. The morphological and structural characteristics of the nanosheets were studied using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet spectroscopy. The surface of the nanosheets was modified using thioglycolic acid, which resulted in enhanced Mitomycin C loading capacity to 274.35% and circumvented the burst drug release due to the improved electrostatic interactions. At pH 7.4 and 5.0, the drug release was significantly boosted from 45.1 to 69.8%, respectively. Thioglycolic acid modified bismuth nanosheets under 1064 nm laser irradiation possessed photothermal conversion efficiency of η=51.4% enabling a temperature rise of 24.9 °C at 100 μg/ml in 5 min. The combination of drug delivery, photothermal therapy, and radio-sensitization greatly damaged the MDA-MB-231 cells through apoptosis and diminished their colony forming.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Guzzetta F, Jellett CW, Azadmanjiri J, Roy PK, Ashtiani S, Friess K, Sofer Z. A New, Thorough Look on Unusual and Neglected Group III-VI Compounds Toward Novel Perusals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206430. [PMID: 36642833 DOI: 10.1002/smll.202206430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The attention on group III-VI compounds in the last decades has been centered on the optoelectronic properties of indium and gallium chalcogenides. These outstanding properties are leading to novel advancements in terms of fundamental and applied science. One of the advantages of these compounds is to present laminated structures, which can be exfoliated down to monolayers. Despite the large knowledge gathered toward indium and gallium chalcogenides, the family of the group III-VI compounds embraces several other noncommon compounds formed by the other group III elements. These compounds present various crystal lattices, among which a great deal is offered from layered structures. Studies on aluminium chalcogenides show interesting potential as anodes in batteries and as semiconductors. Thallium (Tl), which is commonly present in the +1 oxidation state, is one of the key components in ternary chalcogenides. However, binary Tl-Q (Q = S, Se, Te) systems and derived films are still studied for their semiconducting and thermoelectric properties. This review aims to summarize the biggest features of these unusual materials and to shed some new light on them with the perspective that in the future, novel studies can revive these compounds in order to give rise to a new generation of technology.
Collapse
Affiliation(s)
- Fabrizio Guzzetta
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Cameron W Jellett
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
5
|
Hu Y, Liang J, Xia Y, Zhao C, Jiang M, Ma J, Tie Z, Jin Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104556. [PMID: 34846791 DOI: 10.1002/smll.202104556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As emerging 2D materials, arsenene and arsenic materials have attracted rising interest in the past few years. The diverse crystalline phases, exotic electrical characteristics, and widespread applications of 2D arsenene and arsenic bring them great research value and utilization potential. Herein, the recent progress of 2D arsenene and arsenic is reviewed in terms of fundamental properties, preparation, and applications. The fundamental properties of 2D arsenene and arsenic, including the crystal phases, environmental stability, and electrical structure, from theoretical to experimental reports are first summarized. Then, the experimental processes for preparing 2D arsenene and arsenic, along with their respective advantages and disadvantages, are introduced including epitaxial growth, mechanical exfoliation, and liquid-phase exfoliation. Moreover, applications of 2D arsenene and arsenic are discussed, suggesting a wide range of applications of 2D arsenene and arsenic in field-effect transistors, sensors, catalysts, biological applications, and so on. Finally, some perspectives about the challenges and opportunities of promising 2D arsenene and arsenic are provided. This review provides a helpful guidance and stimulates more focus on future explorations and developments of 2D arsenene and arsenic.
Collapse
Affiliation(s)
- Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Junchuan Liang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Cheng Zhao
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Jing Ma
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
6
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
7
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Liu C, Shin J, Son S, Choe Y, Farokhzad N, Tang Z, Xiao Y, Kong N, Xie T, Kim JS, Tao W. Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem Soc Rev 2021; 50:2260-2279. [PMID: 33367452 DOI: 10.1039/d0cs01175d] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities. Furthermore, advances in the modern materials science and nonotechnology have stimulated a revolution in other newly discovered forms of pnictogens-phosphorene, arsenene, antimonene, and bismuthine (layered pnictogens). Based on their favorable optoelectronic properties, layered pnictogens have shown dramatic superiority as emerging photonic nanomedicines for the treatment of various diseases. This tutorial review outlines the history and mechanism of action of ancient pnictogen-based drugs (e.g., arsenical compounds in traditional Chinese medicine) and their repurposing into modern therapeutics. Then, the revolutionary use of emerging layered pnictogens as photonic nanomedicines, alongside assessments of their in vivo biosafety, is discussed. Finally, the challenges to further development of pnictogens are set forth and insights for further exploration of their appealing properties are offered. This tutorial review may also provide some deep insights into the fields of integrated traditional Chinese and Western medicines from the perspective of materials science and nanotechnology.
Collapse
Affiliation(s)
- Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Youmi Choe
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Tapia MA, Gusmão R, Serrano N, Sofer Z, Ariño C, Díaz-Cruz JM, Esteban M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Mourdikoudis S, Sofer Z. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights. CrystEngComm 2021. [DOI: 10.1039/d0ce01766c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adjusting the colloidal chemistry synthetic parameters for pnictogen nanostructures leads to a fine control of their physical properties and the resulting performance in applications. Image adapted from Slidesgo.com.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
11
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Wang X, Hu Y, Mo J, Zhang J, Wang Z, Wei W, Li H, Xu Y, Ma J, Zhao J, Jin Z, Guo Z. Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuxiu Wang
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Hu
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jianbin Mo
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jingyi Zhang
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhenzhen Wang
- Medical school of Nanjing UniversityNanjing University Nanjing 210023 China
| | - Wei Wei
- School of Life SciencesNanjing University Nanjing 210023 China
| | - Huanlin Li
- School of Life SciencesNanjing University Nanjing 210023 China
| | - Yun Xu
- School of Life SciencesNanjing University Nanjing 210023 China
| | - Jing Ma
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhong Jin
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination ChemistryKey Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Antonatos N, Mazánek V, Lazar P, Sturala J, Sofer Z. Acetonitrile-assisted exfoliation of layered grey and black arsenic: contrasting properties. NANOSCALE ADVANCES 2020; 2:1282-1289. [PMID: 36133055 PMCID: PMC9417731 DOI: 10.1039/c9na00754g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 06/13/2023]
Abstract
In recent years, two-dimensional monoelemental nanostructures beyond graphene have received great attention due to their outstanding properties. Out of these elements, only arsenic is known to form different allotropes with a layered structure in the bulk form. Orthorhombic arsenic, also termed "black arsenic", is a metastable form of arsenic with a structure analogous to that of black phosphorus and rhombohedral arsenic is known as "grey arsenic". Here, we compare the exfoliation of black and grey arsenic in acetonitrile in high yield forming stable colloidal solutions of exfoliated materials. Together with the exfoliation procedure, detailed structural and chemical analyses are provided and potential applications in gas sensing and photothermal absorption are demonstrated for potential future arsenic-based devices.
Collapse
Affiliation(s)
- Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc tř. 17. listopadu 12 77 146 Olomouc Czech Republic
| | - Jiri Sturala
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
| |
Collapse
|
14
|
Wang X, Hu Y, Mo J, Zhang J, Wang Z, Wei W, Li H, Xu Y, Ma J, Zhao J, Jin Z, Guo Z. Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angew Chem Int Ed Engl 2020; 59:5151-5158. [PMID: 31891659 DOI: 10.1002/anie.201913675] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Indexed: 01/01/2023]
Abstract
Arsenene has recently emerged as a promising new two-dimensional material for biomedical applications because of its excellent optical and electronic properties. Herein, novel 2D arsenene nanosheets were synthesized and shown to be effective against NB4 promyelocytic leukaemia (APL) cells (82 % inhibition) as well as inducing apoptosis while showing no toxicity towards normal cells. The high zeta potential, small size, and the planar structure were crucial to the toxicity of the materials. Label-free proteomic profiling analysis suggested that arsenene affected nuclear DNA replication, nucleotide excision repair, and pyrimidine metabolism pathways by downregulating the DNA polymerases POLE, POLD1, POLD2, and POLD3. Mass spectrometric studies showed that arsenene bound mainly to nuclear nucleotide acid binding proteins in NB4 cells and further cellular fluorescence studies revealed that the arsenene destroyed the nuclei. In vivo toxicity tests in mice also indicated the physiological biosafety of arsenene.
Collapse
Affiliation(s)
- Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Hu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianbin Mo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingyi Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenzhen Wang
- Medical school of Nanjing University, Nanjing University, Nanjing, 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huanlin Li
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yun Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Liu X, Zhang S, Guo S, Cai B, Yang SA, Shan F, Pumera M, Zeng H. Advances of 2D bismuth in energy sciences. Chem Soc Rev 2020; 49:263-285. [PMID: 31825417 DOI: 10.1039/c9cs00551j] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since graphene has been successfully exfoliated, two-dimensional (2D) materials constitute a vibrant research field and open vast perspectives in high-performance applications. Among them, bismuthene and 2D bismuth (Bi) are unique with superior properties to fabricate state-of-the-art energy saving, storage and conversion devices. The largest experimentally determined bulk gap, even larger than those of stanene and antimonene, allows 2D Bi to be the most promising candidate to construct room-temperature topological insulators. Moreover, 2D Bi exhibits cyclability for high-performance sodium-ion batteries, and the enlarged surface together with the good electrochemical activity renders it an efficient electrocatalyst for energy conversion. Also, the air-stability of 2D Bi is better than that of silicene, germanene, phosphorene and arsenene, which could enable more practical applications. This review aims to thoroughly explore the fundamentals of 2D Bi and its improved fabrication methods, in order to further bridge gaps between theoretical predictions and experimental achievements in its energy-related applications. We begin with an introduction of the status of 2D Bi in the 2D-material family, which is followed by descriptions of its intrinsic properties along with various fabrication methods. The vast implications of 2D Bi for high-performance devices can be envisioned to add a new pillar in energy sciences. In addition, in the context of recent pioneering studies on moiré superlattices of other 2D materials, we hope that the improved manipulation techniques of bismuthene, along with its unique properties, might even enable 2D Bi to play an important role in future energy-related twistronics.
Collapse
Affiliation(s)
- Xuhai Liu
- College of Microtechnology & Nanotechnology, Qingdao University, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chia HL, Mayorga-Martinez CC, Gusmão R, Novotny F, Webster RD, Pumera M. A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chem Commun (Camb) 2020; 56:7909-7912. [DOI: 10.1039/d0cc02770g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel pnictogen-based composite, pnictogen–Au@AgNRs, for the development of a highly sensitive non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Hui Ling Chia
- NTU Institute for Health Technologies
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 637335
- Singapore
| | - Carmen C. Mayorga-Martinez
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Rui Gusmão
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Filip Novotny
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Martin Pumera
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| |
Collapse
|
17
|
Mohamad Nasir MZ, Pumera M. Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115696] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|