1
|
Xiao Y, He D, Peng W, Chen S, Liu J, Chen H, Xin S, Bai Y. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10336-10348. [PMID: 33599127 DOI: 10.1021/acsami.1c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a tradeoff between supercapacitors and batteries, lithium-ion capacitors (LICs) are designed to deliver high energy density, high power density, and long cycling stability. Owing to the different energy storage mechanisms of capacitor-type cathodes and battery-type anodes, engineering and fabricating LICs with excellent energy density and power density remains a challenge. Herein, to alleviate the mismatch between the anode and cathode, we ingeniously designed a graphene with oxidized-polydopamine coating (LG@DA1) and N,P codoped porous foam structure activated carbon (CPC750) as the battery-type anode and capacitor-type cathode, respectively. Using oxidized-polydopamine to stabilize the structure of graphene, increase layer spacing, and modify the surface chemical property, the LG@DA1 anode delivers a maximum capacity of 1100 mAh g-1 as well as good cycling stability. With N,P codoping and a porous foam structure, the CPC750 cathode exhibits a large effective specific surface area and a high specific capacity of 87.5 mAh g-1. In specific, the present LG@DA1//CPC750 LIC showcases a high energy density of 170.6 Wh kg-1 and superior capacity retention of 93.5% after 2000 cycles. The success of the present LIC can be attributed to the structural stability design, surface chemistry regulation, and enhanced utilization of effective active sites of the anode and cathode; thus, this strategy can be applied to improve the performance of LICs.
Collapse
Affiliation(s)
- Yongcheng Xiao
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Dong He
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Weimin Peng
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Songbo Chen
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Jing Liu
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Huqiang Chen
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Shixuan Xin
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yongxiao Bai
- Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Jiang L, Zhang Z, Liang F, Wu D, Wang K, Tang B, Rui Y, Liu F. Superior lithium-storage properties derived from a g-C 3N 4-embedded honeycomb-shaped meso@mesoporous carbon nanofiber anode loaded with Fe 2O 3 for Li-ion batteries. Dalton Trans 2021; 50:9775-9786. [PMID: 34180480 DOI: 10.1039/d1dt01178b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this work, a honeycomb-shaped meso@mesoporous carbon nanofiber material incorporating homogeneously dispersed ultra-fine Fe2O3 nanoparticles (denoted as Fe2O3@g-C3N4@H-MMCN) is synthesised through a pyrolysis process. The honeycomb-shaped configuration of the meso@mesoporous carbon nanofiber material derived from a natural bio-carbon source (crab shell) acts as a support for an anode material for Li-ion batteries. Graphitic carbon nitride (g-C3N4) is produced via the one-step pyrolysis of urea at high temperature under an N2 atmosphere without the assistance of additives. The resulting favorable electrochemical performance, with superior rate capabilities (1067 mA h g-1 at 1000 mA g-1), a remarkable specific capacity (1510 mA h g-1 at 100 mA g-1), and steady cycling performance (782.9 mA h g-1 after 500 cycles at 2000 mA g-1), benefitted from the advantages of both the host material and the Fe2O3 nanoparticles, which play an important role due to their ultra-fine particle size of 5 nm. The excellent cycle life and high capacity demonstrate that this strategy of strong synergistic effects represents a new pathway for pursuing high-electrochemical-performance materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Lei Jiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Fenghao Liang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Daoning Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. J Colloid Interface Sci 2020; 580:638-644. [PMID: 32712470 DOI: 10.1016/j.jcis.2020.07.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022]
Abstract
The ever-increasing electric vehicles and portable electronics make lithium-ion barreries (LIBs) toward high energy density, resulting in long driving range and standby times. Generally, excellent electrochemical performance can be obtained in thin electrode materials with low mass loadings (<1 mg cm-2), but it is difficult to be achieved in commercial electrodes with high mass loadings (>10 mg cm-2). In this work, we report a facile method for fabricating nitrogen doped carbon microtubes (N-CMTs) consisted of crumped carbon nanosheets for high-performance LIBs with ultrahigh mass loading, where non-tubular biomass waste (i.e., peanut dregs) is employed as the precursor. Benefiting from the hollow tubular conductive network, high graphitization, and hierarchical structure, the as-synthesized N-CMTs exhibit ultrahigh area capacity of 6.27 mAh cm-2 at a current density of 1.5 mA cm-2 with a high mass loading of 15 mg cm-2 and superior cycling stability for LIBs. Our approach provides an effective strategy for the preparation of nitrogen-doped carbon microtubes to develope high energy LIBs with high mass loading electrodes.
Collapse
|