1
|
Tang X, Song L, Van der Eycken EV. Post-Ugi Cyclizations Towards Polycyclic N-Heterocycles. CHEM REC 2023; 23:e202300095. [PMID: 37218998 DOI: 10.1002/tcr.202300095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The Ugi reaction has become one of the highly explored reactions for the formation of multifunctional adducts, due to the mild reaction conditions, wide scope and high variability. By carefully selecting the starting four components, Ugi-adducts could undergo different kinds of post-transformations for the synthesis of bioactive heterocycles, natural products and macrocycles. Considering the significance of polycycles, diverse post-Ugi transformations have been developed over the years for constructing structurally novel polycycles. In this account, we summarize important efforts for the synthesis of polycyclic N-heterocycles via post-Ugi cyclizations from the Van der Eycken laboratory onwards 2016. With the aid of transition metal catalysis from gold, rhodium, silver and palladium, as well as metal-free strategies, versatile polyheterocycles are prepared with high efficiency and step-economy.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, 210037, Nanjing, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia
| |
Collapse
|
2
|
Xu X, Zhong L, Feng H, Van der Eycken EV. Application of Metal-Free Dearomatization Reaction as a Sustainable Strategy to Direct Access Complex Cyclic Compounds. CHEM REC 2023; 23:e202300101. [PMID: 37132130 DOI: 10.1002/tcr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The highly efficient construction of complicated heterocyclic frameworks in an atom- and step-economic manner is still one of the cores of synthetic chemistry. Dearomatization reactions show the unique advantage for the construction of functionalized heterocycles and have attracted widespread attention over the past two decades. The metal-free approach has proved to be a green and sustainable paradigm for the synthesis of spirocyclic, polycyclic and heterocyclic scaffolds, which are widely present in natural products and bioactive molecules. In this review, the advances in the recent six years (2017-2023) in metal-free dearomatization reactions are highlighted. Emphasis is placed on developments in the field of organo-catalyzed dearomatization reactions, oxidative dearomatization reactions, Brønsted acid- or base-promoted dearomatization reactions, photoredox-catalyzed dearomatization reactions, and electrochemical oxidation dearomatization reactions.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ling Zhong
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Erik V Van der Eycken
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
3
|
Rapid Microwave Heating and Fast Quenching for the Highly Efficient Production of Long-term Stable Supported Ag Nanoclusters. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Tan Uygun M, Menges N. Synthesis of spiroindolenine-cyclopentenedione skeletons and their chemical behaviours: the first example of a lactone-type spiroindolenine structure. Org Biomol Chem 2022; 20:4161-4166. [PMID: 35522929 DOI: 10.1039/d2ob00396a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A manageable, one-pot, and high-yield protocol for synthesising highly reactive spiroindolenine derivatives is reported. Spiroindolenines are furnished by a reaction between DCC (dicyclohexylcarbodiimide) and indole-3-butenoic acid derivatives. The protocol proposed here involves the construction of a carbon-carbon bond through intramolecular domino cyclisation. The reaction mechanism for spirocyclisation is discussed; both NMR and X-ray analysis were used to verify the structure of spiroindolenine. The applied strategy allowed the formation of spiroindolenine with a dione substructure, which is an unknown compound with a spirocyclic nucleus. Further reactions of spiroindolenines with di-amines, a primary amine, and alcohol have been reported, and new types of indole derivatives, such as indoloquinoxalines, where the spirocentre atom undergoes a nucleophilic attack, are yielded.
Collapse
Affiliation(s)
- Meltem Tan Uygun
- Pharmaceutical Chemistry Section, Van Yuzuncu Yil University, 65080, Van, Turkey. .,SAFF Chemical Reagent RδD Laboratory, VAN-TEKNOKENT, 65080, Van, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yuzuncu Yil University, 65080, Van, Turkey. .,SAFF Chemical Reagent RδD Laboratory, VAN-TEKNOKENT, 65080, Van, Turkey
| |
Collapse
|
5
|
Li Y, Zhang J, Zhao X. Importance of additive effects on the reactivity of Ag catalyzed domino cyclization: a computational chemistry survey. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Lu L, Zheng Z, Yang Y, Liu B, Yin B. Access to Polycyclic Indol(en)ines
via
Base‐Catalyzed
Intramolecular Dearomatizing
3‐Alkenylation
of Alkynyl Indoles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Zuoliang Zheng
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Bo Liu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine Guangzhou Guangdong 510006 China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
7
|
Singh Chouhan P, Singh D, Purohit P, Sharma G, Kant R, Shukla SK, Chauhan PMS. PPh
3
Catalyzed Post‐Transformation Ugi‐4CR Intramolecular Cyclization Reaction: One‐Pot Synthesis of Functionalized Spiropyrrolidinochromanones. ChemistrySelect 2021. [DOI: 10.1002/slct.202003936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pradeep Singh Chouhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Deepti Singh
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Pooja Purohit
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Gaurav Sharma
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
| | - Sanjeev K. Shukla
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
8
|
Bag D, Sawant SD. Heteroarene-tethered Functionalized Alkyne Metamorphosis. Chemistry 2021; 27:1165-1218. [PMID: 32603015 DOI: 10.1002/chem.202002154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Heteroarene-tethered functionalized alkynes are multipotent synthons in organic chemistry. This detailed Review described herein offers a thorough discussion of the metamorphosis of heteroarene-tethered functionalized alkynes, an area which has earned much attention over the past decade in the straightforward synthesis of architecturally complex heterocyclic scaffolds in atom and step economic manner. Depending upon the variety of functionalized alkynes, this Review is divided into multiple sections. Amongst the vast array of synthetic transformations covered, dearomatizing spirocyclizations and cascade spirocyclization/rearrangement are of great interest. Synthetic transformations involving the heteroarene-tethered functionalized alkynes with scope, challenges, limitations, mechanism, their application in the total synthesis of natural products and future perceptions are surveyed.
Collapse
Affiliation(s)
- Debojyoti Bag
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Sanghapal D Sawant
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| |
Collapse
|
9
|
Son JH, Phuan PW, Zhu JS, Lipman E, Cheung A, Tsui KY, Tantillo DJ, Verkman AS, Haggie PM, Kurth MJ. 1-BENZYLSPIRO[PIPERIDINE-4,1'-PYRIDO[3,4-b]indole] 'co-potentiators' for minimal function CFTR mutants. Eur J Med Chem 2021; 209:112888. [PMID: 33092904 PMCID: PMC7744356 DOI: 10.1016/j.ejmech.2020.112888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
Abstract
We previously identified a spiro [piperidine-4,1-pyrido [3,4-b]indole] class of co-potentiators that function in synergy with existing CFTR potentiators such as VX-770 or GLGP1837 to restore channel activity of a defined subset of minimal function cystic fibrosis transmembrane conductance regulator (CFTR) mutants. Here, structure-activity studies were conducted to improve their potency over the previously identified compound, 20 (originally termed CP-A01). Targeted synthesis of 37 spiro [piperidine-4,1-pyrido [3,4-b]indoles] was generally accomplished using versatile two or three step reaction protocols with each step having high efficiency. Structure-activity relationship studies established that analog 2i, with 6'-methoxyindole and 2,4,5-trifluorobenzyl substituents, had the greatest potency for activation of N1303K-CFTR, with EC50 ∼600 nM representing an ∼17-fold improvement over the original compound identified in a small molecule screen.
Collapse
Affiliation(s)
- Jung-Ho Son
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Puay-Wah Phuan
- Departments of Medicine & Physiology, University of California San Francisco, CA 94143, USA
| | - Jie S Zhu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Elena Lipman
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Amy Cheung
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Ka Yi Tsui
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Alan S Verkman
- Departments of Medicine & Physiology, University of California San Francisco, CA 94143, USA
| | - Peter M Haggie
- Departments of Medicine & Physiology, University of California San Francisco, CA 94143, USA.
| | - Mark J Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Silica gel-promoted synthesis of multisubstituted spiroindolenines from tryptamines and γ-chloro-α,β-unsaturated ketones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kumar H, Prajapati G, Dubey A, Ampapathi RS, Mandal PK. Intramolecular 6- exo- dig Post-Ugi Cyclization of N-Substituted 2-Alkynamides: Direct Access to Functionalized Morpholinone Glycoconjugates. Org Lett 2020; 22:9258-9262. [PMID: 33202129 DOI: 10.1021/acs.orglett.0c03486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We herein report a chemo- and regioselective 6-exo-dig catalytic cyclization of Ugi adducts N-substituted 2-alkynamides to access functionalized morpholinone glycoconjugates in the presence of triphenylphosphine. This array allows an interesting multicomponent access to a library of functionalized morpholinone glycoconjugates under mild reaction conditions with regeneration of catalyst triphenylphosphine, supported by 31P nuclear magnetic resonance studies. Density functional theory shows the 6-exo-dig oxocyclization pathway is preferred, which supports our experimental observation.
Collapse
|
12
|
Gao X, Yuan Y, Xie X, Zhang Z. Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chem Commun (Camb) 2020; 56:14047-14050. [PMID: 33103670 DOI: 10.1039/d0cc05672c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A visible-light-initiated intermolecular dearomatization cyclization cascade reaction between alkynes and indole-derived bromides has been explored. This transformation exhibits a wide substrate scope and significant functional group tolerance, providing an efficient way to access a variety of spiroindolenines under mild conditions.
Collapse
Affiliation(s)
- Xiaoshuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | |
Collapse
|
13
|
Luna A, Herrera F, Higuera S, Murillo A, Fernández I, Almendros P. AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
15
|
Pan Z, Liu Y, Hu F, Liu Q, Shang W, Ji X, Xia C. Enantioselective Synthesis of Spiroindolines via Cascade Isomerization/Spirocyclization/Dearomatization Reaction. Org Lett 2020; 22:1589-1593. [PMID: 31990194 DOI: 10.1021/acs.orglett.0c00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spiroindoline skeleton featured with 2,7-diazaspiro[4.4]nonane exists in various structurally intricate and biologically active monoterpene indole alkaloids. A catalytic asymmetric cascade enamine isomerization/spirocyclization/dearomatization succession to construct the spiroindoline was developed, which employed the indolyl dihydropyridine as a substrate under catalysis of the chiral phosphoric acid. This cascade reaction provided various spiroindolines in both diastereoselective and enantionselective fashions.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
16
|
Gusarova NK, Trofimov BA. Organophosphorus chemistry based on elemental phosphorus: advances and horizons. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of studies on the application of elemental phosphorus for the synthesis of important organophosphorus compounds are surveyed and summarized. Currently, this trend represents a synthetically, environmentally and technologically attractive alternative to classical organophosphorus chemistry based on toxic and corrosive phosphorus chlorides. Direct phosphination and phosphinylation of organic compounds with elemental phosphorus (discussed in the first part of the review) basically extend the range of available phosphines, phosphine chalcogenides and phosphinic acids and provides further development of their synthetic potential (discussed in the second part of the review). It is shown that the breakthrough in this area is largely due to the discovery of reactions of elemental phosphorus (white and red) with various electrophiles in superbasic suspensions and emulsions derived from alkali metal hydroxides and to the development of electrochemical, electrocatalytic and catalytic activation of white phosphorus.
The bibliography includes 299 references.
Collapse
|
17
|
De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. Recent advances in continuous-flow organocatalysis for process intensification. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00076k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The progresses on continuous-flow organocatalysis from 2016 to early 2020 are reviewed with focus on transition from batch to flow.
Collapse
Affiliation(s)
- Carmela De Risi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | | | | | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| |
Collapse
|
18
|
Li Y, Zhao X. Mechanism and origins of gold-catalyzed domino cyclization to spiroindolines: the role of periplanar cooperation and hydrogen bonding interactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00359j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to indoloazocines are systematically studied by density functional theory.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
19
|
Wu D, Zhang X, Li Y, Ying S, Zhu L, Li Z, Yang G, Van der Eycken EV. Divergent Access to Imidazopyrazinones and Imidazodiazepinones by Regioswitchable Post-Ugi Heteroannulation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Xueling Zhang
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Yi Li
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Sanjun Ying
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Lixi Zhu
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Heverlee Belgium
| | - Gensheng Yang
- College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road 310014 Hangzhou China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Heverlee Belgium
- Peoples Friendship University of Russia (RUDN University); 117198 Moscow Russia
| |
Collapse
|
20
|
Zaman M, Hasan M, Peshkov AA, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Silver(I) Triflate‐Catalyzed Protocol for the Post‐Ugi Synthesis of Spiroindolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Anatoly A. Peshkov
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Kristof Van Hecke
- XStruct, Department of ChemistryGhent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 Moscow 117198 Russia
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC)Nazarbayev University Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
21
|
Ding Y, Luo S, Weng C, An J. Reductive Deuteration of Nitriles Using D2O as a Deuterium Source. J Org Chem 2019; 84:15098-15105. [PMID: 31610121 DOI: 10.1021/acs.joc.9b02056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuxuan Ding
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shihui Luo
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chaoqun Weng
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jie An
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
22
|
Shen YB, Li LF, Xiao MY, Yang JM, Liu Q, Xiao J. Redox-Neutral Cascade Dearomatization of Indoles via Hydride Transfer: Divergent Synthesis of Tetrahydroquinoline-Fused Spiroindolenines. J Org Chem 2019; 84:13935-13947. [DOI: 10.1021/acs.joc.9b02110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | - Qing Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | | |
Collapse
|
23
|
Mohammadi-Khanaposhtani M, Jalalimanesh N, Saeedi M, Larijani B, Mahdavi M. Synthesis of highly functionalized organic compounds through Ugi post-transformations started from propiolic acids. Mol Divers 2019; 24:855-887. [DOI: 10.1007/s11030-019-09975-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
|