1
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Li L, Ma Z, Li C, Chen G, Gao T, Chu X. Visible light-induced g-C 3N 4 catalyzed C-H acylation and trifluoromethylation of quinoxalinones: an efficient and recyclable approach. Org Biomol Chem 2025; 23:3612-3618. [PMID: 40116797 DOI: 10.1039/d5ob00018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Photoinduced C-H functionalization of quinoxalines is a key transformation for the derivatization of biologically relevant molecules. Traditionally, homogeneous catalysts such as transition metal complexes or organic dyes are indispensable for these transformations. However, these methods often suffer from limitations related to cost, recyclability, and environmental impact. Herein, by using inexpensive, readily available and recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst, a diverse range of acyl- and trifluoromethyl-functionalized quinoxalinone derivatives were synthesized in good to excellent yields under the irradiation of blue LEDs. Control experiments confirmed that the photogenerated electrons played a pivotal role in promoting the generation of acyl and trifluoromethyl radical intermediates. Moreover, g-C3N4 showed no significant loss of activity after at least six reaction cycles. Potentially, g-C3N4 represents a promising alternative to noble metal photocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Linzhao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| | - Zongjie Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| | - Cong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| | - Gaoli Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| | - Taiping Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P.R. China.
| |
Collapse
|
3
|
Mato M, Fernández-González X, D'Avino C, Tomás-Gamasa M, Mascareñas JL. Bioorthogonal Synthetic Chemistry Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202413506. [PMID: 39135347 DOI: 10.1002/anie.202413506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/17/2024]
Abstract
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools. The inherent mildness, tunability, chemoselectivity, and external controllability of photocatalytic transformations make them particularly well-suited for applications in biological and living systems. This minireview summarizes recent advances in bioorthogonal photocatalytic technologies, with a particular focus on their potential to enable the selective generation of designed products within biologically relevant or living settings.
Collapse
Affiliation(s)
- Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Xulián Fernández-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Cinzia D'Avino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Wertz AE, Marguet SC, Turro C, Shafaat HS. Targeted Modulation of Photocatalytic Hydrogen Evolution Activity by Nickel-Substituted Rubredoxin through Functionalized Ruthenium Phototriggers. Inorg Chem 2024; 63:20438-20447. [PMID: 39423027 DOI: 10.1021/acs.inorgchem.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Light-driven hydrogen evolution is a promising means of sustainable energy production to meet global energy demand. This study investigates the photocatalytic hydrogen evolution activity of nickel-substituted rubredoxin (NiRd), an artificial hydrogenase mimic, covalently attached to a ruthenium phototrigger (RuNiRd). By systematically modifying the para-substituents on Ru(II) polypyridyl complexes, we sought to optimize the intramolecular electron transfer processes within the RuNiRd system. A series of electron-donating and electron-withdrawing groups were introduced to tune the photophysical, photochemical, and electrochemical properties of the ruthenium complexes. Our findings reveal that electron-donating substituents can increase the hydrogen evolution capabilities of the artificial enzyme to a point; however, the complexes with the most electron-donating substituents suffer from short lifetimes and inefficient reductive quenching, rendering them inactive. The present work highlights the intricate balance required between driving force, lifetime, and quenching efficiency for effective light-driven catalysis, providing valuable insights into the design of artificial enzyme-photosensitizer constructs.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Zanzi J, Pastorel Z, Duhayon C, Lognon E, Coudret C, Monari A, Dixon IM, Canac Y, Smietana M, Baslé O. Counterion Effects in [Ru(bpy) 3](X) 2-Photocatalyzed Energy Transfer Reactions. JACS AU 2024; 4:3049-3057. [PMID: 39211590 PMCID: PMC11350745 DOI: 10.1021/jacsau.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis that uses the energy of light to promote chemical transformations by exploiting the reactivity of excited-state molecules is at the heart of a virtuous dynamic within the chemical community. Visible-light metal-based photosensitizers are most prominent in organic synthesis, thanks to their versatile ligand structure tunability allowing to adjust photocatalytic properties toward specific applications. Nevertheless, a large majority of these photocatalysts are cationic species whose counterion effects remain underestimated and overlooked. In this report, we show that modification of the X counterions constitutive of [Ru(bpy)3](X)2 photocatalysts modulates their catalytic activities in intermolecular [2 + 2] cycloaddition reactions operating through triplet-triplet energy transfer (TTEnT). Particularly noteworthy is the dramatic impact observed in low-dielectric constant solvent over the excited-state quenching coefficient, which varies by two orders of magnitude depending on whether X is a large weakly bound (BArF 4 -) or a tightly bound (TsO-) anion. In addition, the counterion identity also greatly affects the photophysical properties of the cationic ruthenium complex, with [Ru(bpy)3](BArF 4)2 exhibiting the shortest 3MLCT excited-state lifetime, highest excited state energy, and highest photostability, enabling remarkably enhanced performance (up to >1000 TON at a low 500 ppm catalyst loading) in TTEnT photocatalysis. These findings supported by density functional theory-based calculations demonstrate that counterions have a critical role in modulating cationic transition metal-based photocatalyst potency, a parameter that should be taken into consideration also when developing energy transfer-triggered processes.
Collapse
Affiliation(s)
- Juliette Zanzi
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Zachary Pastorel
- Institut
des Biomolécules Max Mousseron, Université de Montpellier,
CNRS, ENSCM, Montpellier 34095, France
| | - Carine Duhayon
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Elise Lognon
- ITODYS, Université Paris Cité
and CNRS, Paris F-75006, France
| | - Christophe Coudret
- Université
de Toulouse, UPS, Institut de Chimie de Toulouse, FR2599, 118 Route de Narbonne, Toulouse F-31062, France
| | - Antonio Monari
- ITODYS, Université Paris Cité
and CNRS, Paris F-75006, France
| | - Isabelle M. Dixon
- LCPQ, Université
de Toulouse, CNRS, Université
Toulouse III - Paul Sabatier, 118 Route de Narbonne, Toulouse F-31062, France
| | - Yves Canac
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Michael Smietana
- Institut
des Biomolécules Max Mousseron, Université de Montpellier,
CNRS, ENSCM, Montpellier 34095, France
| | - Olivier Baslé
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| |
Collapse
|
6
|
Oliveira GFS, Gouveia FS, Andrade AL, de Vasconcelos MA, Teixeira EH, Palmeira-Mello MV, Batista AA, Lopes LGD, de Carvalho IMM, Sousa EHS. Minimal Functionalization of Ruthenium Compounds with Enhanced Photoreactivity against Hard-to-Treat Cancer Cells and Resistant Bacteria. Inorg Chem 2024; 63:14673-14690. [PMID: 39042379 PMCID: PMC11304396 DOI: 10.1021/acs.inorgchem.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded GRBA and GRPA contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior. Notably, compound GRPA exhibited remarkably high photoproduction of singlet oxygen even in water (ϕΔ = 0.96), almost twice that of GRBA (ϕΔ = 0.52). On the other hand, this latter produced twice more superoxide and hydroxyl radical species than GRPA, which may be due to the modulation of their excited state. Interestingly, GRPA exhibited a modest binding to DNA (Kb = 4.51 × 104), while GRBA did not show a measurable interaction only noticed by circular dichroism measurements. Studies with bacteria showed a great antimicrobial effect, including a synergistic effect in combination with commercial antibiotics. Besides that, GRBA showed very low or no cytotoxicity against four mammalian cells, including a hard-to-treat MDA-MB-231, triple-negative human breast cancer. Potent activities were measured for GRBA upon blue light irradiation, where IC50 of 43 and 13 nmol L-1 were seen against hard-to-treat triple-negative human breast cancer (MDA-MB-231) and ovarian cancer cells (A2780), respectively. These promising results are an interesting case of a simple modification with expressive enhancement of biological activity that deserves further biological studies.
Collapse
Affiliation(s)
- Geângela
de Fátima Sousa Oliveira
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Florencio Sousa Gouveia
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | - Marcos V. Palmeira-Mello
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Alzir A. Batista
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Luiz Gonzaga de
França Lopes
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Idalina Maria Moreira de Carvalho
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| |
Collapse
|
7
|
Zhang Y, Liu S, Guo F, Qin S, Zhou N, Liu Z, Fan X, Chen PR. Bioorthogonal Quinone Methide Decaging Enables Live-Cell Quantification of Tumor-Specific Immune Interactions. J Am Chem Soc 2024; 146:15186-15197. [PMID: 38789930 DOI: 10.1021/jacs.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.
Collapse
Affiliation(s)
- Yan Zhang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuhu Guo
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Nan Zhou
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Ballico M, Alessi D, Aneggi E, Busato M, Zuccaccia D, Allegri L, Damante G, Jandl C, Baratta W. Cyclometalated and NNN Terpyridine Ruthenium Photocatalysts and Their Cytotoxic Activity. Molecules 2024; 29:2146. [PMID: 38731639 PMCID: PMC11085208 DOI: 10.3390/molecules29092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.
Collapse
Affiliation(s)
- Maurizio Ballico
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Dario Alessi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Eleonora Aneggi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Marta Busato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Lorenzo Allegri
- Dipartimento di Medicina, Istituto di Genetica Medica, Università di Udine, Via Chiusaforte, F3, I-33100 Udine, Italy; (L.A.); (G.D.)
| | - Giuseppe Damante
- Dipartimento di Medicina, Istituto di Genetica Medica, Università di Udine, Via Chiusaforte, F3, I-33100 Udine, Italy; (L.A.); (G.D.)
| | - Christian Jandl
- Department of Chemistry & Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany;
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| |
Collapse
|
9
|
Gao Z, Li Y, Xing J, Lu Y, Shao Q, Hu J, Zhao S, He W, Sun B. Transition Metal Ru(II) Catalysts Immobilized Nanoreactors for Conditional Bioorthogonal Catalysis in Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15870-15878. [PMID: 38520329 DOI: 10.1021/acsami.3c19133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Employing transition metal catalysts (TMCs) to perform bioorthogonal activation of prodrugs and pro-fluorophores in biological systems, particularly in a conditional fashion, remains a challenge. Here, we used a mesoporous organosilica nanoscaffold (RuMSN), which localizes Ru(II) conjugates on the pore wall, enabling the biorthogonal photoreduction reactions of azide groups. Due to easily adjustable surface charges and pore diameter, this efficiently engineering RuMSN catalyst, with abundant active sites on the inner pore well, could spontaneously repel or attract substrates with different molecular sizes and charges and thus ensure selective bioorthogonal catalysis. Depending on it, engineering RuMSN nanoreactors showed fascinating application scales from conditional bioorthogonal activation of prodrugs and pro-fluorophores in either intra- or extracellular localization to performing intracellular concurrent and tandem catalysis together with natural enzymes.
Collapse
Affiliation(s)
- Zhiguo Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojia Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaqi Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Quanlin Shao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Shan Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| |
Collapse
|
10
|
D’Avino C, Gutiérrez S, Feldhaus MJ, Tomás-Gamasa M, Mascareñas JL. Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis. J Am Chem Soc 2024; 146:2895-2900. [PMID: 38277674 PMCID: PMC10859955 DOI: 10.1021/jacs.3c13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Performing abiotic synthetic transformations in live cell environments represents a new, promising approach to interrogate and manipulate biology and to uncover new types of biomedical tools. We now found that photocatalytic bond-forming reactions can be added to the toolbox of bioorthogonal synthetic chemistry. Specifically, we demonstrate that exogenous styryl aryl azides can be converted into indoles inside living mammalian cells under photocatalytic conditions.
Collapse
Affiliation(s)
- Cinzia D’Avino
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sara Gutiérrez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Max J. Feldhaus
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
12
|
Tang J, Liu J, Zheng Q, Yao R, Wang M. Neuroprotective Bioorthogonal Catalysis in Mitochondria Using Protein-Integrated Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202312784. [PMID: 37817650 DOI: 10.1002/anie.202312784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria-targeted bioorthogonal catalysis holds promise for controlling cell function precisely, yet achieving selective and efficient chemical reactions within organelles is challenging. In this study, we introduce a new strategy using protein-integrated hydrogen-bonded organic frameworks (HOFs) to enable synergistic bioorthogonal chemical catalysis and enzymatic catalysis within mitochondria. Utilizing catalytically active tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) to self-assemble with [1,1'-biphenyl]-4,4'-biscarboximidamide, we synthesized nanoscale RuB-HOFs that exhibit high photocatalytic reduction activity. Notably, RuB-HOFs efficiently enter cells and preferentially localize to mitochondria, where they facilitate bioorthogonal photoreduction reactions. Moreover, we show that RuB-HOFs encapsulating catalase can produce hydrogen sulfide (H2 S) in mitochondria through photocatalytic reduction of pro-H2 S and degrade hydrogen peroxide through enzymatic catalysis simultaneously, offering a significant neuroprotective effect against oxidative stress. Our findings not only introduce a versatile chemical toolset for mitochondria-targeted bioorthogonal catalysis for prodrug activation but also pave the way for potential therapeutic applications in treating diseases related to cellular oxidative stress.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
13
|
Ogorek AN, Zhou X, Martell JD. Switchable DNA Catalysts for Proximity Labeling at Sites of Protein-Protein Interactions. J Am Chem Soc 2023; 145:16913-16923. [PMID: 37463457 DOI: 10.1021/jacs.3c05578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Proximity labeling (PL) has emerged as a powerful approach to elucidate proteomes within a defined radius around a protein of interest (POI). In PL, a catalyst is attached to the POI and tags nearby endogenous proteins, which are then isolated by affinity purification and identified by mass spectrometry. Although existing PL methods have yielded numerous biological insights, proteomes with greater spatial resolution could be obtained if PL catalysts could be activated at more specific subcellular locations, such as sites where both the POI and a chemical stimulus are present or sites of protein-protein interactions (PPIs). Here, we report DNA-based switchable PL catalysts that are attached to a POI and become activated only when a secondary molecular trigger is present. The DNA catalysts consist of a photocatalyst and a spectral quencher tethered to a DNA oligomer. They are catalytically inactive by default but undergo a conformational change in response to a specific molecular trigger, thus activating PL. We designed a system in which the DNA catalyst becomes activated on living mammalian cells specifically at sites of Her2-Her3 heterodimers and c-Met homodimers, PPIs known to increase the invasion and growth of certain cancers. While this study employs a Ru(bpy)3-type complex for tagging proteins with biotin phenol, the switchable DNA catalyst design is compatible with diverse synthetic PL photocatalysts. Furthermore, the switchable DNA PL catalysts can be constructed from conformation-switching DNA aptamers that respond to small molecules, ions, and proteins, opening future opportunities for PL in highly specific subcellular locations.
Collapse
Affiliation(s)
- Ashley N Ogorek
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xu Zhou
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| |
Collapse
|
14
|
Qiu S, Li W, Deng T, Bi A, Yang Y, Jiang X, Li JP. Ru(bpy) 3 2+ -Enabled Cell-Surface Photocatalytic Proximity Labeling toward More Efficient Capture of Physically Interacting Cells. Angew Chem Int Ed Engl 2023; 62:e202303014. [PMID: 37165969 DOI: 10.1002/anie.202303014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Intercellular proximity labeling has emerged as a promising approach to enable the study of cell-cell interactions (CCIs), but the efficiency of current platforms is limited. Here, we use Ru(bpy)3 2+ to construct an efficient photocatalytic proximity labeling (PPL) system on the cell surface that allows the highly discriminative CCI detection with spatiotemporal resolution. Through the mechanism study and quantitative characterization on living cells, we demonstrate that the singlet-oxygen (1 O2 ) mechanism is more efficient and specific than the single electron transfer (SET) mechanism in Ru-mediated PPL. Ru(bpy)3 2+ catalysts with different cell-anchoring moieties are prepared to facilitate the catalyst loading on primary cells. Finally, based on this system, we develop a "live" T cell receptor (TCR) multimer with TCR-T cells that could sensitively identify and discriminate cells presenting antigens of different affinity, providing a powerful tool to better understand the heterogeneity of antigen presenting cells.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Tao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Angzhi Bi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Xi Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Yan X, Xue J, Wang Y. Synthesis and Theoretical and Photophysical Study on a Series of Neutral Ruthenium(II) Complexes with Donor-Metal-Accepter Configuration. Inorg Chem 2023; 62:1476-1487. [PMID: 36657168 DOI: 10.1021/acs.inorgchem.2c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to construct a new type of ruthenium(II) terpyridine complexes with activated triplet metal-centered (3MC) states, as well as stabilized triplet metal-to-ligand charge transfer (3MLCT) states, conducive to fine emissive performances, Ru-1, Ru-2, Ru-3, and Ru-4 were synthesized. Compared with the [Ru(terpyridine)2]2+ prototype (0.25 ns), this series of ruthenium(II) terpyridine complexes exhibit lengthened excited state lifetime (43.3 ns for Ru-1, 52.7 ns for Ru-2, 43.6 ns for Ru-3, and 53.4 ns for Ru-4). Interfragment charge transfer analysis illustrates the electron transfer direction of the four complexes, manifesting their intramolecular charge transfer characteristic. When excited, their lowest-lying triplet states are assigned as 3MLCT based on spin-density surface distribution. The singlet excited states and 3MLCT states were thoroughly studied by UV-visual absorption and nanosecond time-resolved transient absorption spectra, respectively. Photoluminescence spectra revealed their weak broadband near-infrared emission at room temperature and red phosphorescence at 77 K. The low molecular weight and the good thermal stability make Ru-1 and Ru-2 suitable for vaporization coating, while the fine solubility in common organic solvents makes Ru-3 and Ru-4 suitable for solution processing. Furthermore, the intrinsic electroneutrality and favorable energy levels endow them with new potential to be applied in the optoelectronic field.
Collapse
Affiliation(s)
- Xianju Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Jihua Hengye Electronic Materials CO. LTD. Foshan, Guangdong Province 528200, P. R. China
| |
Collapse
|
16
|
Madec H, Figueiredo F, Cariou K, Roland S, Sollogoub M, Gasser G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem Sci 2023; 14:409-442. [PMID: 36741514 PMCID: PMC9848159 DOI: 10.1039/d2sc05672k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.
Collapse
Affiliation(s)
- Hugo Madec
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Francisca Figueiredo
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Kevin Cariou
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Gilles Gasser
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| |
Collapse
|
17
|
Yin YY, Liu XR, Jin JH, Li ZM, Shen YM, Zhou J, Peng X. Visible-light induced three-component reaction for α-aminobutyronitrile synthesis by C-C bond formation using quantum dots as photocatalysts. Org Biomol Chem 2023; 21:359-364. [PMID: 36503936 DOI: 10.1039/d2ob01797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a three-component reaction of malononitrile, benzaldehyde and N,N-dimethylaniline using aluminium doped CdSeS/CdZnSeS(Al)/ZnS quantum dots (QDs) as visible light catalysts to synthesize α-aminobutyrilitriles at room temperature and under mild conditions. The reactions exhibit high functional group tolerance, and the well dispersed quantum dot catalysts are highly efficient with a turnover number (TON) greater than 1.1 × 103 and can be recycled at least three times without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yu-Yun Yin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Xiao-Rui Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Jia-Hui Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Zhi-Ming Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - Jianhai Zhou
- Najing Technology Corporation Ltd, 428 Qiuyi Road Building No. 3, Binjiang District, Hangzhou, Zhejiang, 310052, People's Republic of China.
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
18
|
Mahmood Z, He J, Cai S, Yuan Z, Liang H, Chen Q, Huo Y, König B, Ji S. Tuning the Photocatalytic Performance of Ruthenium(II) Polypyridine Complexes Via Ligand Modification for Visible-Light-Induced Phosphorylation of Tertiary Aliphatic Amines. Chemistry 2023; 29:e202202677. [PMID: 36250277 DOI: 10.1002/chem.202202677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.
Collapse
Affiliation(s)
- Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jia He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Zhanxiang Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
19
|
Ballico M, Alessi D, Jandl C, Lovison D, Baratta W. Terpyridine Diphosphine Ruthenium Complexes as Efficient Photocatalysts for the Transfer Hydrogenation of Carbonyl Compounds. Chemistry 2022; 28:e202201722. [PMID: 36001351 PMCID: PMC9828271 DOI: 10.1002/chem.202201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/12/2023]
Abstract
The cationic achiral and chiral terpyridine diphosphine ruthenium complexes [RuCl(PP)(tpy)]Cl (PP=dppp (1), (R,R)-Skewphos (2) and (S,S)-Skewphos (3)) are easily obtained in 85-88 % yield through a one-pot synthesis from [RuCl2 (PPh3 )3 ], the diphosphine and 2,2':6',2''-terpyridine (tpy) in 1-butanol. Treatment of 1-3 with NaPF6 in methanol at RT affords quantitatively the corresponding derivatives [RuCl(PP)(tpy)]PF6 (PP=dppp (1 a), (R,R)-Skewphos (2 a) and (S,S)-Skewphos (3 a)). Reaction of [RuCl2 (PPh3 )3 ] with (S,R)-Josiphos or (R)-BINAP in toluene, followed by treatment with tpy in 1-butanol and finally with NaPF6 in MeOH gives [RuCl(PP)(tpy)]PF6 (PP=(S,R)-Josiphos (4 a), (R)-BINAP (5 a)) isolated in 78 % and 86 % yield, respectively. The chiral derivatives have been isolated as single stereoisomers and 3 a, 4 a have been characterized by single crystal X-ray diffraction studies. The tpy complexes with NaOiPr display high photocatalytic activity in the transfer hydrogenation (TH) of carbonyl compounds using 2-propanol as the only hydrogen donor and visible light at 30 °C, at remarkably high S/C (up to 5000) and TOF values up to 264 h-1 . The chiral enantiomers 2, 2 a and 3, 3 a induce the asymmetric photocatalytic TH of acetophenone, affording (S)- and (R)-1-phenylethanol with 51 and 52 % ee, respectively, in a MeOH/2-propanol mixture.
Collapse
Affiliation(s)
- Maurizio Ballico
- Dipartimento di Scienze AgroAlimentariAmbientali e Animali (DI4A)Università di UdineVia Cotonificio 10833100UdineItaly
| | - Dario Alessi
- Dipartimento di Scienze AgroAlimentariAmbientali e Animali (DI4A)Università di UdineVia Cotonificio 10833100UdineItaly
| | - Christian Jandl
- Department of Chemistry & Catalysis Research CenterTUMLichtenbergstraße 485747Garching b. MünchenGermany
| | - Denise Lovison
- Dipartimento di Scienze AgroAlimentariAmbientali e Animali (DI4A)Università di UdineVia Cotonificio 10833100UdineItaly
| | - Walter Baratta
- Dipartimento di Scienze AgroAlimentariAmbientali e Animali (DI4A)Università di UdineVia Cotonificio 10833100UdineItaly
| |
Collapse
|
20
|
Long wavelength-emissive Ru(II) metallacycle-based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc Natl Acad Sci U S A 2022; 119:e2209904119. [PMID: 35914164 PMCID: PMC9371697 DOI: 10.1073/pnas.2209904119] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ruthenium (Ru) complexes are developed as latent emissive photosensitizers for cancer and pathogen photodiagnosis and therapy. Nevertheless, most existing Ru complexes are limited as photosensitizers in terms of short excitation and emission wavelengths. Herein, we present an emissive Ru(II) metallacycle (herein referred to as 1) that is excited by 808-nm laser and emits at a wavelength of ∼1,000 nm via coordination-driven self-assembly. Metallacycle 1 exhibits good optical penetration (∼7 mm) and satisfactory reactive oxygen species production properties. Furthermore, 1 shows broad-spectrum antibacterial activity (including against drug-resistant Escherichia coli) as well as low cytotoxicity to normal mammalian cells. In vivo studies reveal that 1 is employed in precise, second near-infrared biomedical window fluorescent imaging-guided, photo-triggered treatments in Staphylococcus aureus-infected mice models, with negligible side effects. This work thus broads the applications of supramolecular photosensitizers through the strategy of lengthening their wavelengths.
Collapse
|
21
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
22
|
Liu Z, Xie X, Huang Z, Lin F, Liu S, Chen Z, Qin S, Fan X, Chen PR. Spatially resolved cell tagging and surfaceome labeling via targeted photocatalytic decaging. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Cui JW, Rao CH, Jia MZ, Yao XR, Zhang J. Improved Effect of Metal Coordination on Molecular Oxygen Activation for Selective Aerobic Photooxidation. CHEMSUSCHEM 2022; 15:e202200314. [PMID: 35257486 DOI: 10.1002/cssc.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A pyridinium-based complex with environment-friendly and earth-abundant ZnII ion was synthesized and explored as a green catalyst applied in activating molecular oxygen for the simple and efficient photooxidation of alcohols into aldehydes under additive-free and mild conditions. The metal coordination was conducive to promoting the electron transfer efficiency and introducing the heavy-atom effect for the increased generation of ⋅O2 - and 1 O2 . Accordingly, improved photocatalytic performance of this complex compared to its precursor, no matter activity or selectivity, was obtained, facilitating the transformation of alcohols into aldehydes in a sustainable way.
Collapse
Affiliation(s)
- Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Cai-Hui Rao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xin-Rong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
24
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
25
|
Wang C, Xing Z, Ge Q, Yu Y, Wang M, Duan WL. Site-Selective Desaturation of C(sp3)-C(sp3) Bond via Photoinduced Ruthenium Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00332e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium(II) photocatalysis has emerged as one of the most advanced tools amongst modern synthetic chemistry whereas its catalytic mode is generally limited to single electron transfer and triplet energy transfer...
Collapse
|
26
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
27
|
Huang Z, Liu Z, Xie X, Zeng R, Chen Z, Kong L, Fan X, Chen PR. Bioorthogonal Photocatalytic Decaging-Enabled Mitochondrial Proteomics. J Am Chem Soc 2021; 143:18714-18720. [PMID: 34709827 DOI: 10.1021/jacs.1c09171] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spatiotemporally resolved dissection of subcellular proteome is crucial to our understanding of cellular functions in health and disease. We herein report a bioorthogonal and photocatalytic decaging-enabled proximity labeling strategy (CAT-Prox) for spatiotemporally resolved mitochondrial proteome profiling in living cells. Our systematic survey of the photocatalysts has led to the identification of Ir(ppy)2bpy as a bioorthogonal and mitochondria-targeting catalyst that allowed photocontrolled, rapid rescue of azidobenzyl-caged quinone methide as a highly reactive Michael acceptor for proximity-based protein labeling in mitochondria of live cells. Upon careful validation through in vitro labeling, mitochondria-targeting specificity, in situ catalytic activity as well as protein tagging, we applied CAT-Prox for mitochondria proteome profiling in living Hela cells as well as hard-to-transfect macrophage RAW264.7 cells with approximately 70% mitochondria specificity observed from up to 300 proteins enriched. Finally, CAT-Prox was further applied to the dynamic dissection of mitochondria proteome of macrophage cells upon lipopolysaccharide stimulation. By integrating photocatalytic decaging chemistry with proximity-based protein labeling, CAT-Prox offers a general, catalytic, and nongenetic alternative to the enzyme-based proximity labeling strategies for diverse live cell settings.
Collapse
Affiliation(s)
- Zongyu Huang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruxin Zeng
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zujie Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Zhang Y, Wang Q, Yan Z, Ma D, Zheng Y. Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein J Org Chem 2021; 17:2520-2542. [PMID: 34760022 PMCID: PMC8551910 DOI: 10.3762/bjoc.17.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Photoredox catalysis has been applied to renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C-H functionalization that have been reported over the past 5 years, are included.
Collapse
Affiliation(s)
- Yajing Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Qian Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Zongsheng Yan
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Donglai Ma
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| |
Collapse
|
30
|
Abstract
The increasing importance of visible light photoredox catalysis as a powerful strategy
for the activation of small molecules require the development of new effective radical
sources and photocatalysts. The unique properties of organoboron compounds have contributed
significantly to the rapid progress of photocatalysis. Since the first work on the topic in
2005, many researchers have appreciated the role of boron-containing compounds in photocatalysis,
and this is reflected in several publications. In this review, we highlight the utility of
organoboron compounds in various photocatalytic reactions enabling the construction of carbon-
carbon and carbon-heteroatom bonds. The dual role of organoboron compounds in photocatalysis
is highlighted by their applications as reactants and as well as organic photocatalysts.
Collapse
Affiliation(s)
- Tomasz Kliś
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Kublicki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
31
|
Cuéllar E, Diez-Varga A, Torroba T, Domingo-Legarda P, Alemán J, Cabrera S, Martín-Alvarez JM, Miguel D, Villafañe F. Luminescent cis-Bis(bipyridyl)ruthenium(II) Complexes with 1,2-Azolylamidino Ligands: Photophysical, Electrochemical Studies, and Photocatalytic Oxidation of Thioethers. Inorg Chem 2021; 60:7008-7022. [PMID: 33905238 PMCID: PMC8812113 DOI: 10.1021/acs.inorgchem.0c03389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New 1,2-azolylamidino complexes cis-[Ru(bipy)2(NH═C(R)az*-κ2N,N)](OTf)2 (R = Me, Ph; az* = pz, indz, dmpz) are synthesized via chloride abstraction after a subsequent base-catalyzed coupling of a nitrile with the previously coordinated 1,2-azole. The synthetic procedure allows the easy obtainment of complexes having different electronic and steric 1,2-azoylamidino ligands. All of the compounds have been characterized by 1H, 13C, and 15N NMR and IR spectroscopy and by monocrystal X-ray diffraction. Photophysical studies support their phosphorescence, whereas their electrochemistry reveals reversible RuII/RuIII oxidations between +1.13 and +1.25 V (vs SCE). The complexes have been successfully used as catalysts in the photooxidation of different thioethers, the complex cis-[Ru(bipy)2(NH═C(Me)dmpz-κ2N,N)]2+ showing better catalytic performance in comparison to that of [Ru(bipy)3]2+. Moreover, the significant catalytic performance of the dimethylpyrazolylamidino complex is applied to the preparation of the drug modafinil, which is obtained using ambient oxygen as an oxidant. Finally, mechanistic assays suggest that the oxidation reaction follows a photoredox route via oxygen radical anion formation.
Collapse
Affiliation(s)
- Elena Cuéllar
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Alberto Diez-Varga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Tomás Torroba
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Pablo Domingo-Legarda
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose M Martín-Alvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
32
|
Nakane K, Sato S, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Ishikawa M, Nakamura H. Proximity Histidine Labeling by Umpolung Strategy Using Singlet Oxygen. J Am Chem Soc 2021; 143:7726-7731. [PMID: 33904715 DOI: 10.1021/jacs.1c01626] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
While electrophilic reagents for histidine labeling have been developed, we report an umpolung strategy for histidine functionalization. A nucleophilic small molecule, 1-methyl-4-arylurazole, selectively labeled histidine under singlet oxygen (1O2) generation conditions. Rapid histidine labeling can be applied for instant protein labeling. Utilizing the short diffusion distance of 1O2 and a technique to localize the 1O2 generator, a photocatalyst in close proximity to the ligand-binding site, we demonstrated antibody Fc-selective labeling on magnetic beads functionalized with a ruthenium photocatalyst and Fc ligand, ApA. Three histidine residues located around the ApA binding site were identified as labeling sites by liquid chromatography-mass spectrometry analysis. This result suggests that 1O2-mediated histidine labeling can be applied to a proximity labeling reaction on the nanometer scale.
Collapse
Affiliation(s)
- Keita Nakane
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Shinichi Sato
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michihiko Tsushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
33
|
Pokhriyal A, Singh Karki B, Kant R, Rastogi N. Redox-Neutral 1,3-Dipolar Cycloaddition of 2 H-Azirines with 2,4,6-Triarylpyrylium Salts under Visible Light Irradiation. J Org Chem 2021; 86:4661-4670. [PMID: 33677969 DOI: 10.1021/acs.joc.1c00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel visible light mediated redox-neutral 1,3-dipolar cycloaddition of 2H-azirines with 2,4,6-triarylpyrylium tetrafluoroborate salts providing tetrasubstituted pyrroles has been developed. The 2,4,6-triarylpyrylium salt acts as dipolarophile as well as photosensitizer in the reaction, under blue light irradiation. The control experiments indicated single electron oxidation of 2H-azirines by photoexcited pyrylium salts, followed by coupling between an azaallenyl radical cation and triarylpyranyl radical as the key mechanistic feature. The mild conditions, wide substrate scope, and complete regioselectivity are the noticeable attributes of the reaction.
Collapse
Affiliation(s)
| | - Bhupal Singh Karki
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Namrata Rastogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Zheng L, Cai L, Tao K, Xie Z, Lai Y, Guo W. Progress in Photoinduced Radical Reactions using Electron Donor‐Acceptor Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yin‐Long Lai
- College of Chemistry and Civil Engineering Shaoguan University Shaoguan 512005 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
35
|
Torregrosa-Chinillach A, Chinchilla R. Synthesis of Xanthones, Thioxanthones and Acridones by a Metal-Free Photocatalytic Oxidation Using Visible Light and Molecular Oxygen. Molecules 2021; 26:molecules26040974. [PMID: 33673146 PMCID: PMC7918112 DOI: 10.3390/molecules26040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.
Collapse
|
36
|
Xi ZW, Yang L, Wang DY, Feng CW, Qin Y, Shen YM, Pu C, Peng X. Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots. J Org Chem 2021; 86:2474-2488. [PMID: 33415975 DOI: 10.1021/acs.joc.0c02627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an efficient and versatile visible light-driven methodology to transform aryl aldehydes and ketones chemoselectively either to alcohols or to pinacol products with CdSe/CdS core/shell quantum dots as photocatalysts. Thiophenols were used as proton and hydrogen atom donors and as hole traps for the excited quantum dots (QDs) in these reactions. The two products can be switched from one to the other simply by changing the amount of thiophenol in the reaction system. The core/shell QD catalysts are highly efficient with a turn over number (TON) larger than 4 × 104 and 4 × 105 for the reduction to alcohol and pinacol formation, respectively, and are very stable so that they can be recycled for at least 10 times in the reactions without significant loss of catalytic activity. The additional advantages of this method include good functional group tolerance, mild reaction conditions, the allowance of selectively reducing aldehydes in the presence of ketones, and easiness for large scale reactions. Reaction mechanisms were studied by quenching experiments and a radical capture experiment, and the reasons for the switchover of the reaction pathways upon the change of reaction conditions are provided.
Collapse
Affiliation(s)
- Zi-Wei Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Lei Yang
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dan-Yan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Chuan-Wei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yufeng Qin
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, PR China
| | - Yong-Miao Shen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Chaodan Pu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, PR China
| | - Xiaogang Peng
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| |
Collapse
|
37
|
Koo B, Yoo H, Choi HJ, Kim M, Kim C, Kim KT. Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules 2021; 26:556. [PMID: 33494512 PMCID: PMC7865461 DOI: 10.3390/molecules26030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.
Collapse
Affiliation(s)
| | | | | | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| |
Collapse
|
38
|
Martins TJ, Negri LB, Pernomian L, Faial KDCF, Xue C, Akhimie RN, Hamblin MR, Turro C, da Silva RS. The Influence of Some Axial Ligands on Ruthenium-Phthalocyanine Complexes: Chemical, Photochemical, and Photobiological Properties. Front Mol Biosci 2021; 7:595830. [PMID: 33511155 PMCID: PMC7835839 DOI: 10.3389/fmolb.2020.595830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022] Open
Abstract
This work presents a new procedure to synthesize ruthenium–phthalocyanine complexes and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I) (Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The triplet excited-state lifetimes of (I) measured by nanosecond transient absorption showed that two processes occurred, one around 15 ns and the other around 3.8 μs. Axial ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted from secondary reactions of singlet oxygen in the presence of the ruthenium complex. We also investigate how axial ligands in the ruthenium–phthalocyanine complexes affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at 1 μmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%, showing that (I) was more active than (II) at the same concentration. Furthermore, (II) was detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium–phthalocyanine complexes point to the potential use of (I) as a metal-based drug in clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the ruthenium phthalocyanine complexes.
Collapse
Affiliation(s)
- Tássia Joi Martins
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Laisa Bonafim Negri
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Laena Pernomian
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Congcong Xue
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Regina N Akhimie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Michael R Hamblin
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Roberto S da Silva
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo, Ribeirão Preto, Brazil.,Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Dermatology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
40
|
Gualandi A, Nenov A, Marchini M, Rodeghiero G, Conti I, Paltanin E, Balletti M, Ceroni P, Garavelli M, Cozzi PG. Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem 2020. [DOI: 10.1002/cctc.202001690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Marianna Marchini
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giacomo Rodeghiero
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
- Cyanagen Srl Via Stradelli Guelfi 40/C 40138 Bologna Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Ettore Paltanin
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Matteo Balletti
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Paola Ceroni
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
41
|
Ravetz B, Tay NES, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS CENTRAL SCIENCE 2020; 6:2053-2059. [PMID: 33274281 PMCID: PMC7706074 DOI: 10.1021/acscentsci.0c00948] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 05/05/2023]
Abstract
Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.
Collapse
Affiliation(s)
- Benjamin
D. Ravetz
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas E. S. Tay
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L. Joe
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
- E-mail:
| | - Melda Sezen-Edmonds
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael A. Schmidt
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Janey
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- E-mail:
| |
Collapse
|
42
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
43
|
Josephson B, Fehl C, Isenegger PG, Nadal S, Wright TH, Poh AWJ, Bower BJ, Giltrap AM, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap JBI, Kawamura A, Baldwin AJ, Mohammed S, Compton RG, Gouverneur V, Davis BG. Light-driven post-translational installation of reactive protein side chains. Nature 2020; 585:530-537. [PMID: 32968259 DOI: 10.1038/s41586-020-2733-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (β-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent β-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.
Collapse
Affiliation(s)
- Brian Josephson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlie Fehl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Patrick G Isenegger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Simon Nadal
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tom H Wright
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Adeline W J Poh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ben J Bower
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew M Giltrap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Lifu Chen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Grace Roper
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Oluwatobi Arisa
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeroen B I Sap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew J Baldwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Veronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- The Rosalind Franklin Institute, Harwell, UK.
| |
Collapse
|
44
|
Dutta S, Rühle J, Schikora M, Deussner-Helfmann N, Heilemann M, Zatsepin T, Duchstein P, Zahn D, Knör G, Mokhir A. Red light-triggered photoreduction on a nucleic acid template. Chem Commun (Camb) 2020; 56:10026-10029. [PMID: 32728684 DOI: 10.1039/d0cc03086d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjugate Sn(iv)(pyropheophorbide a)dichloride-(peptide nucleic acid) catalyzes reduction of azobenzene derivatives in the presence of complementary nucleic acid (NA) upon irridiation with red light (660 nm). This is the first red light-induced NA-templated photoreduction. It is highly sensitive to single mismatches in the NA-template and can detect down to 5 nM NAs.
Collapse
Affiliation(s)
- Subrata Dutta
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu Y, Bai Y. Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems. ACS APPLIED BIO MATERIALS 2020; 3:4717-4746. [DOI: 10.1021/acsabm.0c00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ying Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
46
|
Angerani S, Winssinger N. Sense-and-Release Logic-Gated Molecular Network Responding to Dimeric Cell Surface Proteins. J Am Chem Soc 2020; 142:12333-12340. [PMID: 32539375 DOI: 10.1021/jacs.0c04469] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dimeric proteins are prominent in biology, and receptor dimerization (homo- or heterodimerization) is central to signal transduction. Herein, we report a network that responds to a membrane-associated dimeric protein with the uncaging of a powerful cytotoxic. The network is based on two ligands functionalized with peptide nucleic acids (PNAs) (templating strand and catalyst-functionalized strand, respectively) and a substrate with the caged cytotoxic (monomethyl auristatin E: MMAE; a high-affinity tubulin ligand). In the presence of the dimeric protein, the network yields a cooperative supramolecular assembly with a hybridization architecture that enhances the templated reaction and enables the uncaging of a substrate. The network was tested on cells that express a cancer biomarker, carbonic anhydrase IX, in response to hypoxia. The output of the network correlates with the expression of carbonic anhydrase IX, and this biomarker was harnessed to uncage a potent cytotoxic agent.
Collapse
Affiliation(s)
- Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
47
|
Kim KT, Winssinger N. Enhanced SNP-sensing using DNA-templated reactions through confined hybridization of minimal substrates (CHOMS). Chem Sci 2020; 11:4150-4157. [PMID: 34122878 PMCID: PMC8152519 DOI: 10.1039/d0sc00741b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
DNA or RNA templated reactions are attractive for nucleic acid sensing and imaging. As for any hybridization-based sensing, there is a tradeoff between sensitivity (detection threshold) and resolution (single nucleotide discrimination). Longer probes afford better sensitivity but compromise single nucleotide resolution due to the small thermodynamic penalty of a single mismatch. Herein we report a design that overcomes this tradeoff. The reaction is leveraged on the hybridization of a minimal substrate (covering 4 nucleotides) which is confined by two guide DNAs functionalized respectively with a ruthenium photocatalyst. The use of a catalytic reaction is essential to bypass the exchange of guide DNAs while achieving signal amplification through substrate turnover. The guide DNAs restrain the reaction to a unique site and enhance the hybridization of short substrates by providing two π-stacking interactions. The reaction was shown to enable the detection of SNPs and SNVs down to 50 pM with a discrimination factor ranging from 24 to 309 (median 82, 27 examples from 3 oncogenes). The clinical diagnostic potential of the technology was demonstrated with the analysis of RAS amplicons obtained directly from cell culture.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
48
|
Chen J, Li K, Shon JSL, Zimmerman SC. Single-Chain Nanoparticle Delivers a Partner Enzyme for Concurrent and Tandem Catalysis in Cells. J Am Chem Soc 2020; 142:4565-4569. [PMID: 32100539 PMCID: PMC11446247 DOI: 10.1021/jacs.9b13997] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Combining synthetic chemistry and biocatalysis is a promising but underexplored approach to intracellular catalysis. We report a strategy to codeliver a single-chain nanoparticle (SCNP) catalyst and an exogenous enzyme into cells for performing bioorthogonal reactions. The nanoparticle and enzyme reside in endosomes, creating engineered artificial organelles that manufacture organic compounds intracellularly. This system operates in both concurrent and tandem reaction modes to generate fluorophores or bioactive agents. The combination of SCNP and enzymatic catalysts provides a versatile tool for intracellular organic synthesis with applications in chemical biology.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Ji Seon Lucy Shon
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Li J, Kong H, Zhu C, Zhang Y. Photo-controllable bioorthogonal chemistry for spatiotemporal control of bio-targets in living systems. Chem Sci 2020; 11:3390-3396. [PMID: 34109018 PMCID: PMC8152734 DOI: 10.1039/c9sc06540g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
The establishment of bioorthogonal chemistry is one of the most significant advances in chemical biology using exogenous chemistry to perturb and study biological processes. Photo-modulation of biological systems has realized temporal and spatial control on biomacromolecules in living systems. The combination of photo-modulation and bioorthogonal chemistry is therefore emerging as a new direction to develop new chemical biological tools with spatiotemporal resolution. This minireview will focus on recent development of bioorthogonal chemistry subject to spatiotemporal control through photo-irradiation. Different strategies to realize photo-control on bioorthogonal bond-forming reactions and biological applications of photo-controllable bioorthogonal reactions will be summarized to give a perspective on how the innovations on photo-chemistry can contribute to the development of optochemical biology. Future trends to develop more optochemical tools based on novel photochemistry will also be discussed to envision the development of chemistry-oriented optochemical biology.
Collapse
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
50
|
Zhang Y, Zhang D. Visible-Light-Induced Copper-Catalyzed Alkynylation/Alkylation of Alkenes. J Org Chem 2020; 85:3213-3223. [PMID: 32105070 DOI: 10.1021/acs.joc.9b03087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoinduced, copper-catalyzed, three-component reaction of haloalkane, alkenes, and alkyne under mild reaction conditions is reported. The reaction provides a direct approach to introducing privileged functionalities into propargylic systems.
Collapse
Affiliation(s)
- Yajing Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dayong Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|