1
|
Tian Y, Zeng W, Dong X, Huang L, Zhou Y, Zeng H, Lin Z, Zou G. Enhanced UV Nonlinear Optical Properties in Layered Germanous Phosphites through Functional Group Sequential Construction. Angew Chem Int Ed Engl 2024; 63:e202409093. [PMID: 38850113 DOI: 10.1002/anie.202409093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
This study pioneers a novel strategy for synthesizing solar-blind ultraviolet (UV) nonlinear optical (NLO) crystals through functional groups sequential construction, effectively addressing the inherent trade-offs among broad transmittance, enhanced second-harmonic generation (SHG), and optimal birefringence. We have developed two innovative van der Waals layered germanous phosphites: GeHPO3, the first Ge(II)-based oxide NLO crystal which exhibits a black phosphorus-like structure, and K(GeHPO3)2Br, distinguished by its exceptional birefringence and graphene-like structure. Significantly, GeHPO3 exhibits a remarkable array of NLO properties, including the highest SHG coefficient recorded among all NLO crystals for phase-matching and generating 266 nm coherent light via quadruple frequency conversion. It delivers a potent SHG intensity, surpassing KH2PO4 (KDP) by 10.3 times at 1064 nm and β-BaB2O4 by 1.3 times at 532 nm, complemented by a distinct UV absorption edge at 211 nm and moderate birefringence of 0.062 at 546 nm. Comprehensive theoretical analysis links these exceptional characteristics to the unique NLO-active GeO3 4- units and the distinctive, highly ordered layered structures. Our findings deliver essential experimental insights into the development of Ge(II)-based optoelectronic materials and present a strategic blueprint for engineering structure-driven functional materials with customized properties.
Collapse
Affiliation(s)
- Yao Tian
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Yuqiao Zhou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Yu S, Fan J, Hu Z, Wu Y. Li 3Na 7B 4P 6O 26: a new ultraviolet transparent congruently melting non-linear optical crystal. Dalton Trans 2024; 53:12331-12337. [PMID: 38984652 DOI: 10.1039/d4dt01428f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The exploration of nonlinear optical crystals with ultraviolet (UV) transparent ranges and easy-to-grow large-size crystals is one of the current research interests. Herein, by combining borate and phosphate groups, a novel congruently melting alkali-mixed metal borophosphate, Li3Na7B4P6O26 (LNBPO) with UV transparency was successfully designed and synthesized using a high-temperature flux method. LNBPO crystallizes in the non-centrosymmetric (NCS) and polar orthorhombic space group Pca21 (no. 29), showcasing interesting (B2P3O13)∞ chains along the c axis. Notably, LNBPO has a moderate second harmonic generation (SHG) response (∼0.38 × KDP) and displays a wide transmission ranging from 0.22 to 3.68 μm, as measured by a [001]-oriented crystal wafer. Furthermore, a high-quality single crystal of LNBPO with sizes up to 14 × 14 × 12 mm3 was grown using the top-seeded solution growth method. The refractive indices of LNBPO were determined by applying the minimum deviation angle method. These results show that LNBPO possesses a phase-matching wavelength as short as 483 nm, indicating its potential as a new UV NLO crystal.
Collapse
Affiliation(s)
- Sujuan Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiangtao Fan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
3
|
Long X, An R, Lv Y, Wu X, Mutailipu M. Tunable Optical Anisotropy in Rare-Earth Borates with Flexible [BO 3] Clusters. Chemistry 2024; 30:e202401488. [PMID: 38695300 DOI: 10.1002/chem.202401488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Borates have garnered a lot of attention in the realm of solid-state chemistry due to their remarkable characteristics, in which the synthesis of borates with isolated [BO3] by adding rare-earth elements is one of the main areas of structural design study. Five new mixed-metal Y-based rare-earth borates, Ba2ZnY2(BO3)4, KNa2Y(BO3)2, Li2CsY4(BO3)5, LiRb2Y(BO3)2, and RbCaY(BO3)2, have been discovered using the high-temperature solution approach. Isolated [BO3] clusters arranged in various configurations comprise their entire anionic framework, allowing for optical anisotropy tuning between 0.024 and 0.081 under 1064 nm. In this study, we characterize the relative placements of their [BO3] groups and examine how their structure affects their characteristics. The origin of their considerable optical anisotropy has been proven theoretically. This study unequivocally demonstrates that even a slight alteration to borates' anionic structure can result in a significant improvement in performance.
Collapse
Affiliation(s)
- Xiangyu Long
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ran An
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
4
|
Bai Z, Ok KM. Exceptional Optical Anisotropy Enhancement Achieved Through Dual-Ions Cosubstitution Strategy in Novel Hybrid Bismuth Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311391. [PMID: 38233208 DOI: 10.1002/smll.202311391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Guided by a superb dual-ions cosubstitution strategy, two novel, highly optically anisotropic hybrid bismuth halides are designed and synthesized. The first compound, Gu3Bi2NO3Cl8 (Gu = C(NH2)3), is developed using the 2D perovskite halide Cs3Bi2Cl9 as the maternal structure. This involved substituting all Cs+ cations with organic Gu+ and replacing some Cl- anions with [NO3]-. Further substitution of Cl- with additional [NO3]- resulted in the formation of nitrate-rich Gu2Bi(NO3)3Cl2 crystal, exhibiting a 3.4-fold increase in [NO3]- per unit volume. Both compounds have a structurally 0D nature, comprising bismuth-centered polyhedra formed by coordinated chlorides and monodentate/bidentate nitrate moieties, with Gu+ serving as a separator and linker. Notably, the presence of superb optically anisotropic dual-ions, i.e., planar Gu+ and [NO3]-, enables these crystals to possess sharply enhanced optical anisotropy, with birefringence values more than 1 order of magnitude higher than that of the initial crystal Cs3Bi2Cl9 (0.162/0.186vs 0.011 at 546 nm). The discovery and characterization of Gu3Bi2NO3Cl8 and Gu2Bi(NO3)3Cl2 crystals provide new insights into achieving expected modifications in optical properties through the utilization of a dual-ions cosubstitution strategy.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
5
|
Ding M, Wu Q, Shen Y, Hong J, Dong G, Ma L. (C 8H 7N 2O 2) 2[Bi 2Br 8]·2H 2O and (C 8H 7N 2O 2) 6[Bi 2Cl 10]Cl 2·2H 2O: Exploring Birefringent Crystals in Hybrid Halide Systems. Inorg Chem 2024; 63:9701-9705. [PMID: 38728855 DOI: 10.1021/acs.inorgchem.3c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.
Collapse
Affiliation(s)
- Mingliang Ding
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yaoguo Shen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jinquan Hong
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guofa Dong
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liang Ma
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
6
|
Zhang MS, Yao WD, Pei SM, Liu BW, Jiang XM, Guo GC. HgBr 2: an easily growing wide-spectrum birefringent crystal. Chem Sci 2024; 15:6891-6896. [PMID: 38725498 PMCID: PMC11077557 DOI: 10.1039/d4sc00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 μm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.
Collapse
Affiliation(s)
- Ming-Shu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Shao-Min Pei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
7
|
Guha S, Dalui A, Sarkar PK, Roy S, Paul A, Kamilya S, Mondal A, Dasgupta I, Sarma DD, Acharya S. Stereochemically Active Lone Pair Leads to Birefringence in the Vacancy Ordered Cs 3Sb 2Cl 9 Perovskite Single Crystals. J Phys Chem Lett 2024; 15:3061-3070. [PMID: 38466659 DOI: 10.1021/acs.jpclett.3c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Stereochemically active lone pair (SCALP) cations are attractive units for realizing optical anisotropy. Antimony(III) chloride perovskites with the SCALP have remained largely unknown to date. We synthesized a new vacancy ordered Cs3Sb2Cl9 perovskite single crystals with SbCl6 octahedral linkage containing the SCALP. Remarkably, all-inorganic halide perovskite Cs3Sb2Cl9 single crystals exhibit an exceptional birefringence of 0.12 ± 0.01 at 550 nm. The SCALP brings a large local structural distortion of the SbCl6 octahedra promoting birefringence optical responses in Cs3Sb2Cl9 single crystals. Theoretical calculations reveal that the considerable hybridization of Sb 5s and 5p with Cl 3p states largely contribute to the SCALP. Furthermore, the change in the Sb-Cl-Sb bond angle creates distortion in the SbCl6 octahedral arrangement in the apical and equatorial directions within the crystal structure incorporating the required anisotropy for the birefringence. This work explores pristine inorganic halide perovskite single crystals as a potential birefringent material with prospects in integrated optical devices.
Collapse
Affiliation(s)
- Shramana Guha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amit Dalui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Piyush Kanti Sarkar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sima Roy
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Atanu Paul
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Indra Dasgupta
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Technical Research Center, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Technical Research Center, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Wu T, Jiang X, Duanmu K, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. Giant Optical Anisotropy in a Covalent Molybdenum Tellurite via Oxyanion Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306670. [PMID: 38288532 DOI: 10.1002/advs.202306670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Indexed: 02/07/2024]
Abstract
Large birefringence is a crucial but hard-to-achieve optical parameter that is a necessity for birefringent crystals in practical applications involving modulation of the polarization of light in modern opto-electronic areas. Herein, an oxyanion polymerization strategy that involves the combination of two different types of second-order Jahn-Teller distorted units is employed to realize giant anisotropy in a covalent molybdenum tellurite. Mo(H2O)Te2O7 (MTO) exhibits a record birefringence value for an inorganic UV-transparent oxide crystalline material of 0.528 @ 546 nm, which is also significantly larger than those of all commercial birefringent crystals. MTO has a UV absorption edge of 366 nm and displays a strong powder second-harmonic generation response of 5.4 times that of KH2PO4. The dominant roles of the condensed polytellurite oxyanions [Te8O20]8- in combination with the [MoO6]6- polyhedra in achieving the giant birefringence in MTO are clarified by structural analysis and first-principles calculations. The results suggest that polymerization of polarizability-anisotropic oxyanions may unlock the promise of birefringent crystals with exceptional birefringence.
Collapse
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Hu C, Wu M, Han J, Yang Z, Han S, Pan S. New antimony fluorooxoborates with strong birefringence and unprecedented structural characterisation. Chem Commun (Camb) 2024; 60:2653-2656. [PMID: 38348788 DOI: 10.1039/d3cc05784d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Fluorooxoborates constitute a rich source of optical crystals due to their structural diversity and excellent performance. Antimony fluorooxoborates with stereochemically active lone pairs of electrons still have not been found, although the first antimony borate was discovered several years ago. In this study, we have achieved the successful synthesis of the first antimony(III) fluorooxoborate with an unprecedented [B2O4F]∞ chain, namely SbB2O4F. Remarkably, SbB2O4F shows strong birefringence (0.171@1064 nm) and short UV cutoff edges (about 220 nm) according to calculations. The birefringence of SbB2O4F mainly originates from the highly distorted [SbO4] groups.
Collapse
Affiliation(s)
- Chenhui Hu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfan Wu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Guo J, Zhan X, Lan J, Liu X, Zhao S, Xu X, Wu LM, Chen L. Sb 4O 5I 2: Enhancing Birefringence through Optimization of Sb/I Ratio for Alignment of Stereochemically Active Lone Pairs. Inorg Chem 2024; 63:2217-2223. [PMID: 38207277 DOI: 10.1021/acs.inorgchem.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Birefringent crystals are the key components of functional optics, contributing significantly to scientific and technological advancements. To enhance birefringence, the presence of stereochemically active lone pairs offers a unique opportunity. In fact, strengthening the stereochemical activity and aligning uniformly lone pairs face tough challenges. Herein, an anisotropic layered crystal, Sb4O5I2, is discovered to exhibit enhanced birefringence. The influence of crystal symmetry on the birefringence of Sb4O5X2 (X = Cl, Br, or I) is found to be minor. Instead, the asymmetric nature of ABUCBs (i.e., cis-X3[SbO3]6- and cis-X3[SbO4]8-) plays a crucial role in enhancing the optical anisotropy. And the orientation of these ABUCBs is equally important. We demonstrate that by adjusting the Sb/I ratio from 5:1 to 2:1, all of the intralayer Sb atoms in Sb5O7I-P63 are forced onto the surface position. This structural adjustment leads to strengthened ionic bonding interactions, enhanced activity of the lone pairs, and uniform alignments of the ABUCBs in Sb4O5I2. Consequently, this results in a 6-fold increase in birefringence.
Collapse
Affiliation(s)
- Jingyu Guo
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtong Zhan
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Jiating Lan
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuang Zhao
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xi Xu
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Li-Ming Wu
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling Chen
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
11
|
Zuo J, Feng Q, Du H. K 2RbB 8PO 16: A Borophosphate with Moderate Birefringence and Deep-Ultraviolet Transmission. Inorg Chem 2024; 63:272-279. [PMID: 38099743 DOI: 10.1021/acs.inorgchem.3c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A new borophosphate, K2RbB8PO16 (KRBPO) was synthesized. It exhibits a bilayer structure consisting of two B-O layers with an 18-membered ring (18-MR) joined by [PO4], which is composed of the π-conjugated group [BO3] and non-π-conjugated groups [BO4] and [PO4]. The UV-vis-NIR diffuse reflectance spectroscopy shows that the cutoff edge is less than 200 nm. The calculation indicates that KRBPO exhibits moderate birefringence of 0.057@1064 nm, and the source of birefringence is mainly from the [BO3] groups.
Collapse
Affiliation(s)
- Jianyi Zuo
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Qiuyuan Feng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| |
Collapse
|
12
|
Jung A, Li Y, Ok KM. Chiral amino acid-templated tin fluorides tailoring nonlinear optical properties, birefringence, and photoluminescence. Dalton Trans 2023; 53:105-114. [PMID: 38047538 DOI: 10.1039/d3dt03257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In this study, we successfully synthesized two types of new chiral amino acid-templated tin fluoride crystals: (R)-[(C8H10NO3)2]Sn(IV)F6, (S)-[(C8H10NO3)2]Sn(IV)F6, (R)-[C8H10NO3]Sn(II)F3, and (S)-[C8H10NO3]Sn(II)F3, employing a slow evaporation method. The crystal structures of Sn(IV)-compounds were determined to belong to the noncentrosymmetric (NCS) nonpolar space group, P21212. Conversely, the structures of Sn(II)-compounds were found to crystallize in the NCS polar space group, P21, as revealed by single-crystal X-ray diffraction analysis. Remarkably, Sn(IV)-compounds exhibited a larger birefringence (0.328@546.1 nm), attributed to the well-stacked arrangement of planar π-conjugated benzene rings along the b-axis. The ability of tin(IV) fluorides to form more hydrogen bonds with ligands increased the probability of π-π interactions between benzene rings, enabling the growth of centimeter-sized crystals in Sn(IV)-compounds. In contrast, Sn(II)-compounds displayed a stronger second-harmonic generation (SHG) response (0.85 × KDP) than Sn(IV)-compounds (0.46 × KDP). This enhanced SHG response in Sn(II)-compounds was attributed to the increased dipole moments resulting from the presence of lone pairs. Additionally, Sn(II)-compounds exhibited photoluminescent properties due to the transition from the metal-to-ligand charge transfer state, facilitated by the presence of the lone pairs.
Collapse
Affiliation(s)
- Ahyung Jung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
13
|
Liu X, Yang YC, Li MY, Chen L, Wu LM. Anisotropic structure building unit involving diverse chemical bonds: a new opportunity for high-performance second-order NLO materials. Chem Soc Rev 2023. [PMID: 38014465 DOI: 10.1039/d3cs00691c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We define the anisotropic structure building unit that encompasses diverse chemical bonds (ABUCB). The ABUCB is highly likely to cause anisotropy in both crystallographic structure and spatial electron distribution, ultimately resulting in enhanced macroscopic optical anisotropy. Accordingly, the (PO3F)2- or (SO3F)- tetrahedron involving the unique P-F or S-F bond serves as such an ABUCB. The distinct chemical bond effectively alters the microscopic nature of the structure building unit, such as polarizability anisotropy, hyperpolarizability, and geometry distortion; this consequently changes the macroscopic second-order nonlinear optical (2nd-NLO) properties of the materials. In this review, we summarize both typical and newly emerged compounds containing ABUCBs. These compounds encompass approximately 90 examples representing six distinct categories, including phosphates, borates, sulfates, silicates, chalcogenides and oxyhalides. Furthermore, we demonstrate that the presence of ABUCBs in DUV/UV NLO compounds contributes to an increase in birefringence and retention of a large band gap, facilitating phase matching in high-energy short-wavelength spectral ranges. On the other hand, the inclusion of ABUCBs in IR NLO compounds offers a feasible method for increasing the band gap and consequently enhancing the larger laser-induced damage threshold. This review consolidates various trial-and-error explorations and presents a novel strategy for designing 2nd-NLO compounds, potentially offering an opportunity for the development of high-performance 2nd-NLO materials.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Yi-Chang Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Meng-Yue Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| | - Li-Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| |
Collapse
|
14
|
Yang X, Zhang W, Pan X, Hou X, Han S. Hydroxyl-Driven Enhanced Birefringence in Borophosphates. Inorg Chem 2023. [PMID: 37992320 DOI: 10.1021/acs.inorgchem.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Borophosphates have become promising candidates for ultraviolet or deep-ultraviolet functional crystals. Through high-temperature solution method, four new borophosphates, K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH), were acquired successfully. Single crystal X-ray diffraction suggests that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) belong to the noncentrosymmetric space group, while P21/c-(NH4)2B2P3O11(OH) belongs to the centrosymmetric compound. It is worth mentioning that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) present the new fundamental building blocks [B2P2O11], [BP2O10H], and [BP2O9(OH)], respectively, as far as we know. Compared with K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH) exhibit a larger optical anisotropy, further confirming the positive effect of hydroxyl groups on birefringence. UV-vis-NIR diffuse reflectance spectra display that K2B2P2O9 and (NH4)2BP2O7(OH) have short UV cutoff edges. Meanwhile, theoretical calculations were conducted to comprehend their optical properties and electronic structures.
Collapse
Affiliation(s)
- Xia Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xueling Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Dong W, Sun Y, Feng H, Deng D, Jiang J, Yang J, Guo W, Tang L, Kong J, Zhao J. K 2Sr 4(PO 3) 10: A Polyphosphate with Deep-UV Cutoff Edge and Enlarged Birefringence. Inorg Chem 2023; 62:16215-16221. [PMID: 37733938 DOI: 10.1021/acs.inorgchem.3c02751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new polyphosphate K2Sr4(PO3)10 is synthesized by a high-temperature solution method. This compound crystallizes in the triclinic space group of P1̅, consisting of the 1D infinite [PO3]∞ chains and K and Sr ions between the chains. Compared with AM2(PO3)5 (A = K, Rb, Cs; M = Ba, Pb), K2Sr4(PO3)10 exhibits a more complex [PO3]∞ chain structure and more diverse metal cationic coordination environment. More importantly, K2Sr4(PO3)10 has both a deep-UV cutoff edge (<200 nm) and a significantly enlarged birefringence. First-principles calculations indicate that the birefringence of K2Sr4(PO3)10 is 0.017 at 1064 nm, about 2 times that of RbBa2(PO3)5 (0.008 at 1064 nm), which reaches a new height among the reported mixed alkali metal and alkaline earth metal phosphate. Theoretical calculations and structural analyses show that the enlarged birefringence of K2Sr4(PO3)10 mainly originates from the [PO3]∞ chains arranged in an inverted zigzag. This discovery introduces a new strategy for devising novel phosphate deep-UV optical crystals with a large birefringence.
Collapse
Affiliation(s)
- Weimin Dong
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Yingjie Sun
- School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Henghao Feng
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Dazheng Deng
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jun Jiang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jin Yang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Wei Guo
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Libin Tang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jincheng Kong
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jun Zhao
- Kunming Institute of Physics, Kunming 650223, P. R. China
| |
Collapse
|
16
|
Wang W, Wang X, Xu L, Zhang D, Xue J, Wang S, Dong X, Cao L, Huang L, Zou G. Centrosymmetric Rb 2Sb(C 2O 4) 2.5(H 2O) 3 and Noncentrosymmetric RbSb 2(C 2O 4)F 5: Two Antimony (III) Oxalates as UV Optical Materials. Inorg Chem 2023; 62:13148-13155. [PMID: 37532705 DOI: 10.1021/acs.inorgchem.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we have successfully synthesized two rubidium antimony (III) oxalates, namely, Rb2Sb(C2O4)2.5(H2O)3 and RbSb2(C2O4)F5, utilizing a low-temperature hydrothermal method. These two compounds share a similar chemical composition, consisting of Sb3+ cations with active lone pair electrons, alkali metal Rb+ ions, and planar π-conjugated C2O42- anions. However, they exhibit different symmetries, Rb2Sb(C2O4)2.5(H2O)3 is centrosymmetric (CS), while RbSb2(C2O4)F5 is noncentrosymmetric (NCS), which should be caused by the presence of F- ions. Notably, the NCS compound, RbSb2(C2O4)F5, demonstrates a moderate second-harmonic generation (SHG) response, approximately 1.3 times that of KH2PO4 (KDP), and exhibits a large birefringence of 0.09 at 546 nm. These characteristics indicate that RbSb2(C2O4)F5 holds promising potential as a nonlinear optical material for ultraviolet (UV) applications. Detailed structural analysis and theoretical calculations confirm that the excellent optical properties arise from the synergistic effects between Sb3+ cations with SCALP and planar π-conjugated [C2O4]2- groups.
Collapse
Affiliation(s)
- Weiyi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xinyue Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Lu Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Die Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jiale Xue
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Shuyao Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
17
|
Deng L, Zhang R, Zhang J, Xie W, Bai C, Yang Z, Hou X, Han S, Pan S. Stereochemically Active Tin(II)-Induced Enhancement of Birefringence in Sn II Sn IV (PO 4 ) 2 and SrSn(PO 4 )PO 2 (OH) 2. Chemistry 2023; 29:e202300743. [PMID: 37133248 DOI: 10.1002/chem.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
Two new tin(II) phosphates, SnII SnIV (PO4 )2 and SrSn(PO4 )PO2 (OH)2 , were synthesized by the high-temperature solution method and hydrothermal method, respectively. Theoretical study indicates that by introducing tin(II) with stereochemical activity lone pairs (SCALP) in metal phosphates, the birefringence was enhanced, 0.048@1064 nm for SnII SnIV (PO4 )2 and 0.080@1064 nm for SrSn(PO4 )PO2 (OH)2 .
Collapse
Affiliation(s)
- Lihan Deng
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- School of Physics and Materials Science, Changji University, Changji, 831100, P.R. China
| | - Ruonan Zhang
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jie Zhang
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- School of Physics and Materials Science, Changji University, Changji, 831100, P.R. China
| | - Wenlong Xie
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- School of Physics and Materials Science, Changji University, Changji, 831100, P.R. China
| | - Chunyan Bai
- School of Physics and Materials Science, Changji University, Changji, 831100, P.R. China
| | - Zhihua Yang
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xueling Hou
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shujuan Han
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shilie Pan
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China) E-mails
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
18
|
Li XF, Wang K, He C, Li JH, An XT, Pan J, Wei Q, Wang GM, Yang GY. Sb 4O 3(TeO 3) 2(HSO 4)(OH): An Antimony Tellurite Sulfate Exhibiting Large Optical Anisotropy Activated by Lone Pair Stereoactivity. Inorg Chem 2023; 62:7123-7129. [PMID: 37083369 DOI: 10.1021/acs.inorgchem.3c00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A new birefringent crystal of Sb4O3(TeO3)2(HSO4)(OH) was achieved by incorporating two stereochemically active lone pair (SCALP) cations of Sb(III) and Te(IV) into sulfates simultaneously. The Sb3+ and Te4+ ions display highly distorted coordination environments due to the SCALP effect. Sb4O3(TeO3)2(HSO4)(OH) displays a 3D structure composed of [Sb4O3(TeO3)2(OH)]∞+ layers bridged by [SO3(OH)]- tetrahedra. It possesses a large birefringence and a wide optical transparent range, making it a new UV birefringent crystal. First-principles calculation analysis suggests that the synergistic effect of the cooperation of SCALP effect of Sb3+ and Te4+ cations make a dominant contribution to the birefringence. The work highlights that units with SCALP cations have advantages in generating large optical anisotropy and are preferable structural units for designing novel birefringent materials.
Collapse
Affiliation(s)
- Xiao-Fei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Kui Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Chao He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xing-Tao An
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
19
|
Han J, Liu K, Chen L, Li F, Yang Z, Zhang F, Pan S, Mutailipu M. Finding a Deep-UV Borate BaZnB 4 O 8 with Edge-sharing [BO 4 ] Tetrahedra and Strong Optical Anisotropy. Chemistry 2023; 29:e202203000. [PMID: 36282275 DOI: 10.1002/chem.202203000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
The polarization modulation of deep-UV light is an important process that incorporates functionality to selectively respond to light-mater interaction. Typically, optical anisotropy is foremost to the use efficiency of deep-UV birefringent crystals. Herein, a new congruently melting polyborate with extremely large birefringence (Δn(001) =0.14@589.3 nm) and band gap (6.89 eV) is discovered as a high performance birefringent crystal, which breaks the current deadlock of deep-UV polyborates that usually show small birefringence. The rigid tetrahedra, including [ZnO4 ] and edge-sharing [BO4 ] tetrahedra, make all the planar [BO3 ] triangles in the lattice adopt preferential arrangement and thereby lead to an extraordinary large birefringence that is larger than all the deep-UV borates with experimentally measured values. Structural analyses with the additional theoretical calculations were used to study the origin of strong optical anisotropy in BaZnB4 O8 .
Collapse
Affiliation(s)
- Jian Han
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaitong Liu
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Chen
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuming Li
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihua Yang
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fangfang Zhang
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shilie Pan
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Miriding Mutailipu
- Research Center for Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Guo J, Tudi A, Lu X, Han S. Noncentrosymmetric versus Centrosymmetric: Halogen Induced Variable Coordination Modes of Sn 2+ and Structural Transition in Sn 3B 3O 7X (X = Cl and Br). Inorg Chem 2023; 62:679-684. [PMID: 36583543 DOI: 10.1021/acs.inorgchem.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new borate halides, Sn3B3O7X (X = Cl and Br), were successfully synthesized via introducing Sn2+ with lone-pair and halogen into borate. Interestingly, halogen-induced variable coordination modes of Sn2+ and anion frameworks make them crystallize in different space groups, from noncentrosymmetric (Pna21) to centrosymmetric (Pbca). Sn3B3O7Cl possesses an SHG response of about 0.5 times that of KDP, while Sn3B3O7Br exhibits a large birefringence (0.123@1064 nm). The theoretical calculations were performed to elucidate the structure-property relationships.
Collapse
Affiliation(s)
- Jingyu Guo
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoquan Lu
- China Testing and Certification International Group Co., Ltd, Beijing 100024, China
| | - Shujuan Han
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Yan J, Chu D, Chen Z, Han J. Li 2PbB 2O 5: A Pyroborate with Large Birefringence Induced by the Synergistic Effect of Stereochemical Active Lone Pair Cations and π-Conjugated [B 2O 5] Groups. Inorg Chem 2022; 61:18795-18801. [DOI: 10.1021/acs.inorgchem.2c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingdong Yan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zilong Chen
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jian Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
22
|
Yalikun A, Zhang K, Han J, Yang Z. LiSrSbS 3: parallel configurations of lone pair electrons inducing a large birefringence. Dalton Trans 2022; 51:14545-14550. [PMID: 36073503 DOI: 10.1039/d2dt01698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancement of birefringence is significant since the birefringent materials can create and control polarized light and be used extensively in various advanced optical systems. By optimizing the arrangement of [SbS3] units with stereo-chemical active lone pair electrons, a new quaternary thioantimonate LiSrSbS3 with a large birefringence has been successfully synthesized by a high temperature solid-state reaction method. LiSrSbS3 crystallizes in the monoclinic space group of P21/c. In the structure, the isolated infinite [LiS4] chains and zigzag [SrS6] chains are alternately connected with each other to compose a three-dimensional (3D) framework, and the isolated pyramid [SbS3] units are located between them. To analyze the source of large birefringence, the electronic structure and optical properties of LiSrSbS3 were further investigated by the first-principles method, and the results show that the optimized arrangement [SbS3] trigonal pyramid induces a large birefringence.
Collapse
Affiliation(s)
- Alimujiang Yalikun
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kewang Zhang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Zhang D, Wang Q, Ren L, Cao L, Huang L, Gao D, Bi J, Zou G. Sharp Enhancement of Birefringence in Antimony Oxalates Achieved by the Cation-Anion Synergetic Interaction Strategy. Inorg Chem 2022; 61:12481-12488. [PMID: 35894629 DOI: 10.1021/acs.inorgchem.2c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Birefringent materials with large birefringence play an important role in in laser science and technology owing to their ability to modulate polarized light. However, the lack of systematic and effective synthesis strategies severely hinders the development of novel superior birefringent materials. Herein, the cation-anion synergetic interaction strategy was proposed to successfully synthesize two excellent UV birefringent materials, RbSb(C2O4)F2·H2O and [C(NH2)3]Sb(C2O4)F2·H2O. Both compounds feature unprecedented [Sb(C2O4)F2]∞- anionic chains composed of planar π-conjugated [C2O4]2- units and a distorted SbO4F2 complex with stereochemically active lone pairs, which induce a large optical anisotropy. Remarkably, further enhancement of birefringence in [C(NH2)3]Sb(C2O4)F2·H2O was achieved via cation-anion synergetic interactions between the [C(NH2)3]+ cationic groups and [Sb(C2O4)F2]∞- anionic chains. It exhibited a giant birefringence of 0.323@546 nm, twice larger than that of its analogue RbSb(C2O4)F2·H2O (0.162@546 nm). A detailed structural analysis and theoretical calculations revealed that the cation-anion synergetic interaction strategy is an effective strategy for the efficient exploration of superior birefringent materials, which will guide the further exploration of new structure-driven functional materials.
Collapse
Affiliation(s)
- Die Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liying Ren
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
24
|
Huang W, Zhang X, Li Y, Zhou Y, Chen X, Li X, Wu F, Hong M, Luo J, Zhao S. A Hybrid Halide Perovskite Birefringent Crystal. Angew Chem Int Ed Engl 2022; 61:e202202746. [PMID: 35290709 DOI: 10.1002/anie.202202746] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/05/2022]
Abstract
Birefringent crystals that can modulate the polarization of light play a significant role in modern optical devices including polarizing microscopes, optical isolators, and achromatic quarter-wave plates. To date, commercial birefringent crystals are exclusively limited to purely inorganic compounds. Here we report a new organic-inorganic hybrid halide, MLAPbBr4 (MLA=melamine), which features a (110)-oriented layered perovskite structure. Although the 6s2 lone-pair electrons of Pb2+ cations are stereochemically inert, MLAPbBr4 exhibits a birefringence of 0.322@550 nm, which exceeds those of all commercial birefringent crystals. The first-principles calculations reveal that this birefringence should be ascribed to the highly dislocated π-conjugation of MLA cations and high distortion of PbBr6 octahedra. This work highlights the persistently neglected great potential of hybrid halide perovskites as birefringent crystals.
Collapse
Affiliation(s)
- Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xu Zhang
- School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Fafa Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
25
|
Zhang W, Huang J, Han S, Yang Z, Pan S. Enhancement of Birefringence in Borophosphate Pushing Phase-Matching into the Short-Wavelength Region. J Am Chem Soc 2022; 144:9083-9090. [PMID: 35561005 DOI: 10.1021/jacs.2c02310] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Borophosphates are very known for the short ultraviolet (UV) cutoff edge and have become the promising UV and deep-UV functional crystals candidates; however, tetrahedral [PO4] and [BO4] groups own weak anisotropy of polarizability and are not conducive to large birefringence, which hinders their application in the short-wavelength region. Improving their birefringence without compromising the band gap is the main research objective. By introducing the excellent birefringent functional groups, such as [B2O5], [BO2]∞ chain, [B2Ox(OH)5-x], and so forth into borophosphates, seven borophosphates with improved birefringence were successfully synthesized (Δn > 0.05@532 nm). Remarkably, among them, the centimeter-sized crystal of Rb3B8PO16 with a short deep-UV cutoff edge (175 nm) and large birefringence (Δn(exp.) ∼ 0.072@589.3 nm) exhibits the shortest phase-matching wavelength (222 nm), which makes Rb3B8PO16 a promising UV NLO crystal, while KB6PO10(OH)4 with deep-UV cutoff edge features the largest birefringence (Δn(exp.) ∼ 0.103@546 nm) in the reported borophosphate system, making KB6PO10(OH)4 a promising deep-UV birefringent crystal. This study not only provides feasible strategies for increasing the birefringence of borophosphates but also pushes phase-matching into the short-wavelength region.
Collapse
Affiliation(s)
- Wenbin Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junben Huang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
RbLiZn5(PO4)4 and BaLiZn3(PO4)3: two new zinc orthophosphates with all tetrahedra-based anion frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Tudi A, Han S, Yang Z, Pan S. Potential optical functional crystals with large birefringence: Recent advances and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214380] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Huang W, Zhang X, Li Y, Zhou Y, Chen X, Li X, Wu F, Hong M, Luo J, Zhao S. A Hybrid Halide Perovskite Birefringent Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqi Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xu Zhang
- School of Science Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xin Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Fafa Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|
29
|
Chen Y, Hu C, Fang Z, Li Y, Mao J. From Pb(H 2C 3N 3O 3)(OH) to Pb(H 2C 3N 3O 3)F: Homovalent Anion Substitution-Induced Band Gap Enlargement and Birefringence Enhancement. Inorg Chem 2022; 61:1778-1786. [PMID: 35012311 DOI: 10.1021/acs.inorgchem.1c03711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Birefringent materials capable of modulating the polarization of light have attracted intensive studies because of their wide utilization in optical communication and the laser industry. Herein, two new lead(II)-based cyanurates, namely, Pb(H2C3N3O3)X (X = OH, F), were synthesized by hydrothermal methods, and the first halogen-containing metal cyanurate Pb(H2C3N3O3)F was successfully obtained by the rational substitution of a homovalent anion. Pb(H2C3N3O3)X (X = OH, F) belong to space group P1̅, and their structures display a neutral [Pb(H2C3N3O3)X] (X = OH, F) layer. The Pb2+ ions in Pb(H2C3N3O3)(OH) are interconnected by hydroxyl groups and oxygen atoms of cyanurate anions into a 1D [PbO(OH)]- chain, whereas the Pb2+ ions in Pb(H2C3N3O3)F are interconnected by F- anions and oxygen atoms of cyanurate anions into a 2D [PbOF]- layer. The π-π interactions between adjacent hydroisocyanurate rings and the hydrogen bonds between neighboring neutral layers provide additional stability to the structures. Luminescent studies show that Pb(H2C3N3O3)(OH) and Pb(H2C3N3O3)F emit yellow-green and blue light, respectively. Theoretical calculations unveiled their birefringences of 0.079 and 0.203@1064 nm and their band gaps of 3.96 and 4.96 eV, respectively, for OH- and F- containing materials. Obviously, the substitution of OH- by F- with the largest electronegativity can simultaneously improve both the birefringence and band gap.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunli Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhi Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yilin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianggao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
30
|
Tang RL, Yan M, Yao WD, Liu W, Guo SP. HgTeO 2F(OH): A Nonlinear Optical Oxyfluoride Constructed of Active [TeO 2F(OH)] 2- Pyramids and V-Shaped [HgO 2] 2- Groups. Inorg Chem 2022; 61:2333-2339. [PMID: 35029377 DOI: 10.1021/acs.inorgchem.1c03737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxyhalides possessing the merits of oxides and halides have widely received attention for their comprehensive physical performances, especially as potential nonlinear optical (NLO) crystals. Here, based on conventional strategy for obtaining acentric compounds, a Te4+ lone-pair cation was introduced into oxyhalides, and one oxyfluoride, HgTeO2F(OH), was obtained via a hydrothermal reaction. Crystallized in the polar space group Pca21, the layered structure of HgTeO2F(OH) is composed of V-shaped [HgO2]2- groups and [TeO2F(OH)]2- pyramids, in which the [TeO2F(OH)]2- pyramid first served as the NLO functional motif. Its powder sample exhibits a phase-matchable SHG response of 1.1 × KH2PO4 at 1064 nm, and its birefringence (0.09@1064 nm) is sufficient for phase-matchable behavior, which manifests its comprehensive capacity as a promising NLO candidate. Theoretical calculations about electronic structure and optical properties are also carried out, revealing that the Te4+ lone-pair cation makes the predominant contribution to the SHG effect and synergizes with the [HgO2]2- groups.
Collapse
Affiliation(s)
- Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
31
|
Dong X, Zhang Z, Huang L, Zou G. [C(NH 2) 3]BiCl 2SO 4: an excellent birefringent material obtained by multifunctional group synergy. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01675c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A multifunctional group synergistic strategy was proposed to successfully develop an excellent organic–inorganic hybrid guanidine sulfate birefringent material [C(NH2)3]BiCl2SO4.
Collapse
Affiliation(s)
- Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
32
|
Zheng T, Wang Q, Ren J, Cao L, Huang L, Gao D, Bi J, Zou G. Halogen regulation triggers structural transformation from centrosymmetric to noncentrosymmetric switches in tin phosphate halides Sn 2PO 4X (X = F, Cl). Inorg Chem Front 2022. [DOI: 10.1039/d2qi01207c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A tin phosphate halide, centrosymmetric Sn2PO4F, was successfully transformed into noncentrosymmetric Sn2PO4Cl with excellent comprehensive performance by the substitution of F− with Cl−.
Collapse
Affiliation(s)
- Ting Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - JinXuan Ren
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
33
|
Xie C, Tudi A, Oganov AR. PNO: a promising deep-UV nonlinear optical material with the largest second harmonic generation effect. Chem Commun (Camb) 2022; 58:12491-12494. [DOI: 10.1039/d2cc02364d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PNO with the largest SHG response in the deep-UV region was discovered by structural prediction methods.
Collapse
Affiliation(s)
- Congwei Xie
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russian Federation
| | - Abudukadi Tudi
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Artem R. Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russian Federation
| |
Collapse
|
34
|
Cai W, Chen J, Pan S, Yang Z. Enhancement of band gap and birefringence induced via π-conjugated chromophore with “tail effect”. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01270c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enhancement of band gap and birefringence of template compounds can be attributed to this “tail effect” caused by the extended electronic distribution from [CO3]2−/[BO3]3−/[C3N3O3]3− to [HCO3]−/[HBO3]2−/[HC3N3O3]2−.
Collapse
Affiliation(s)
- Wenbing Cai
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
| | - Jiongquan Chen
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
| |
Collapse
|
35
|
Dong X, Long Y, Huang L, Cao L, Gao D, Bi J, Zou G. Large optical anisotropy differentiation induced by the anion-directed regulation of structures. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The modulation of optical anisotropy for two novel UV birefringent materials [C(NH2)3]2Sb3F3(HPO3)4 and [C(NH2)3]SbFPO4·H2O has been successfully achieved via anion-directing regulation structures.
Collapse
Affiliation(s)
- Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ying Long
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
36
|
Guo J, Tudi A, Han S, Yang Z, Pan S. Sn 2 PO 4 I: An Excellent Birefringent Material with Giant Optical Anisotropy in Non π-Conjugated Phosphate. Angew Chem Int Ed Engl 2021; 60:24901-24904. [PMID: 34523205 DOI: 10.1002/anie.202111604] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/05/2022]
Abstract
Exploring non π-conjugated phosphate birefringent crystal with a large birefringence has been a great challenge. Herein, based on the unique two-dimensional layered structure in KBe2 BO3 F2 (KBBF), two new compounds, Sn2 PO4 I and Sn2 BO3 I, were designed and synthesized successfully, maintaining the layer structural feature and enhancing the optical anisotropy of crystals. In particular, the birefringence of Sn2 PO4 I is larger than or equal to 0.664 @546 nm, which is largest among the reported borates and phosphates, even surpassing commercial birefringent crystals YVO4 and TiO2 . This work indicates that a breakthrough in birefringence of inorganic compound was achieved. Also, it provides a guiding idea for exploring large birefringence materials in the future.
Collapse
Affiliation(s)
- Jingyu Guo
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abudukadi Tudi
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Guo J, Tudi A, Han S, Yang Z, Pan S. Sn
2
PO
4
I: An Excellent Birefringent Material with Giant Optical Anisotropy in Non π‐Conjugated Phosphate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jingyu Guo
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry of CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Abudukadi Tudi
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry of CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry of CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry of CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry of CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
38
|
Ji M, Hu C, Fang Z, Chen Y, Mao J. Tin(II)-Induced Large Birefringence Enhancement in Metal Phosphates. Inorg Chem 2021; 60:15744-15750. [PMID: 34569796 DOI: 10.1021/acs.inorgchem.1c02388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two alkali tin(II) phosphates, namely, Rb[SnF(HPO4)] and Rb(Sn3O)2(PO4)3, were synthesized through mild hydrothermal methods. They belong to the orthorhombic Pnma and Pbcn space groups, respectively. Rb[SnF(HPO4)] features a layered structure based on 1D [SnF(HPO4)]∞ chains interconnected by hydrogen bonds, with Rb+ cations located at the interlayer space. For Rb(Sn3O)2(PO4)3, each pair of [Sn3O]4+ clusters is bridged by a pair of [P(1)O4]3- tetrahedra to build a 1D [Sn-P-O]∞ chain. These 1D [Sn-P-O]∞ chains are further cross-linked though [P(2)O4]3- tetrahedra to construct a 3D network with 7- and 10-membered-ring channels. The tin(II) ions in Rb[SnF(HPO4)] and Rb(Sn3O)2(PO4)3 with stereochemically active lone pairs (SCALPs) significantly enhance the birefringences of metal phosphates: Δn = 0.147@1064 nm for Rb[SnF(HPO4)] and 0.082@1064 nm for Rb(Sn3O)2(PO4)3.
Collapse
Affiliation(s)
- Mengya Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunli Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Zhi Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Jianggao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
39
|
Shi ZH, Yang M, Yao WD, Liu W, Guo SP. SnPQ 3 (Q = S, Se, S/Se): A Series of Lone-Pair Cationic Chalcogenophosphates Exhibiting Balanced NLO Activity Originating from SnQ 8 Units. Inorg Chem 2021; 60:14390-14398. [PMID: 34464110 DOI: 10.1021/acs.inorgchem.1c02178] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two chalcogenophosphates, SnPS2.86Se0.14 (1) and SnPSe3 (2), are isostructural and crystallize in the monoclinic noncentrosymmetric space group Pn. Their three-dimensional (3D) structures are constructed by [Sn(1)Q8] hendecahedra and [Sn(2)Q8] dodecahedra by sharing Q vertices and edges, leaving cavities for isolated [P2Q6] (Q = S/Se, Se) dimers. A second-harmonic-generation (SHG) measurement indicates that 1 is phase-matchable with a response of approximately 1.2 × AgGaS2 (AGS), which is verified by the theoretical calculation result. The powder sample of 1 exhibits a high laser-induced damage threshold of 3.9 × AGS. For comparison, the known SnPS3 (3) was also synthesized and evaluated using the same method. The chemical composition-NLO performance relationship of 1-3 is also discussed. Dipole moment calculation results suggest that [SnQ8] polyhedra make the main contribution to their excellent nonlinear optical (NLO) performance.
Collapse
Affiliation(s)
- Zhi-Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
40
|
Jin C, Shi X, Zeng H, Han S, Chen Z, Yang Z, Mutailipu M, Pan S. Hydroxyfluorooxoborate Na[B 3 O 3 F 2 (OH) 2 ]⋅[B(OH) 3 ]: Optimizing the Optical Anisotropy with Heteroanionic Units for Deep Ultraviolet Birefringent Crystals. Angew Chem Int Ed Engl 2021; 60:20469-20475. [PMID: 34152654 DOI: 10.1002/anie.202107291] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/06/2022]
Abstract
Maximizing the optical anisotropy in birefringent materials has emerged as an efficient route for modulating the polarization-dependent light propagation. Currently, the generation of deep-ultraviolet (deep-UV) polarized light below 200 nm is essential but challenging due to the interdisciplinary significance and insufficiency of high-performing birefringent crystals. Herein, by introducing multiple heteroanionic units, the first sodium difluorodihydroxytriborate-boric acid Na[B3 O3 F2 (OH)2 ]⋅[B(OH)3 ] has been characterized as a novel deep-UV birefringent crystal. Two rare heteroanionic units, [B3 O3 F2 (OH)2 ] and [B(OH)3 ], optimally align to induce large optical anisotropy and also the dangling bonds are eliminated with hydrogens, which results in an extremely large birefringence and band gap. The well-ordered OH/F anions in [B3 O3 F2 (OH)2 ] and [B(OH)3 ] were identified and confirmed by various approaches, and also the origin of large birefringence was theoretically discussed. These results confirm the feasibility of utilizing hydrogen involved heteroanionic units to design crystals with large birefringence, and also expand the alternative system of deep-UV birefringent crystals with new hydroxyfluorooxoborates.
Collapse
Affiliation(s)
- Congcong Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuping Shi
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zeng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.,Institution Center of Materials Science and Optoelectronics, Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Jin W, Zhang W, Tudi A, Wang L, Zhou X, Yang Z, Pan S. Fluorine-Driven Enhancement of Birefringence in the Fluorooxosulfate: A Deep Evaluation from a Joint Experimental and Computational Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003594. [PMID: 34085784 PMCID: PMC8336506 DOI: 10.1002/advs.202003594] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Indexed: 06/02/2023]
Abstract
Understanding and exploring the functional modules (FMs) consisting of local atomic groups can promote the development of the materials with functional performances. Oxygen-containing tetrahedral modules are popular in deep-ultraviolet (DUV) optical materials, but their weak optical anisotropy is adverse to birefringence. Here, the fluorooxosulfate group is proved as a new birefringence-enhanced FM for the first time. The birefringence of fluorooxosulfates can be 4.8-15.5 times that of sulfates with the same metal cations while maintaining a DUV band gap. The polarizing microscope measurement confirms the birefringence enhancement by using the millimeter crystals experimentally. The theoretical studies from micro and macro levels further reveal a novel universal strategy that the fluorine induced anisotropic electronic distribution in fluorooxo-tetrahedral group is responsible for the enhancement of birefringence. This study will guide the future discovery of DUV optical materials with enlarged birefringence.
Collapse
Affiliation(s)
- Wenqi Jin
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry of CASXinjiang Key Laboratory of Electronic Information Materials and Devices40‐1 South Beijing RoadUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wenyao Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry of CASXinjiang Key Laboratory of Electronic Information Materials and Devices40‐1 South Beijing RoadUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Abudukadi Tudi
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry of CASXinjiang Key Laboratory of Electronic Information Materials and Devices40‐1 South Beijing RoadUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Liying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry of CASXinjiang Key Laboratory of Electronic Information Materials and Devices40‐1 South Beijing RoadUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry of CASXinjiang Key Laboratory of Electronic Information Materials and Devices40‐1 South Beijing RoadUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
42
|
Jin C, Shi X, Zeng H, Han S, Chen Z, Yang Z, Mutailipu M, Pan S. Hydroxyfluorooxoborate Na[B
3
O
3
F
2
(OH)
2
]⋅[B(OH)
3
]: Optimizing the Optical Anisotropy with Heteroanionic Units for Deep Ultraviolet Birefringent Crystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congcong Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuping Shi
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Zeng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhen Chen
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry, CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
- Institution Center of Materials Science and Optoelectronics, Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
43
|
Tian T, Li Z, Wang N, Zhao S, Xu J, Lin Z, Mei D. Cs 2ZnSn 3S 8: A Sulfide Compound Realizes a Large Birefringence by Modulating the Dimensional Structure. Inorg Chem 2021; 60:9248-9253. [PMID: 34132527 DOI: 10.1021/acs.inorgchem.1c01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Birefringence, an important optical performance parameter for optoelectronic functional materials, is mainly influenced by the types of anion groups and their spatial arrangement. Inspired by the relationship between the structure and properties of chalcogenides, combined with the dimensional transformation, we successfully synthesized a sulfide compound (Cs2ZnSn3S8) with a two-dimensional layered structure and a large birefringence. The experimental results showed that, compared with Rb10Zn4Sn4S17, Cs2ZnSn3S8 achieved the structural transition from a zero-dimensional arrangement to a two-dimensional lamellar arrangement and achieved a breakthrough of birefringence from 0 to 0.12, which was determined by both experiments and first-principles calculations. These findings demonstrated that Cs2ZnSn3S8 was a potential birefringent material and provided instructions for the study of the synthesis of birefringent materials.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zefen Li
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Naizheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sangen Zhao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics and II State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350000, China
| | - Jiayue Xu
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
44
|
Wang K, Jing Q, Wan Z, Lee MH, Duan H, Cao H, Zhang J. Different mechanism of stereochemical activity and birefringence in post-transition metal halides: A first-principles investigation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Lu Y, Jiang X, Wu C, Lin L, Huang Z, Lin Z, Humphrey MG, Zhang C. Molecular Engineering toward an Enlarged Optical Band Gap in a Bismuth Sulfate via Homovalent Cation Substitution. Inorg Chem 2021; 60:5851-5859. [PMID: 33821639 DOI: 10.1021/acs.inorgchem.1c00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Materials capable of generating coherent short-wave (<300 nm) light have attracted extensive scientific and technical interest due to their wide utilization in laser research. In this study, a the rare-earth-metal sulfate NaCe(SO4)2(H2O) (NCSO) was synthesized through a hydrothermal method, while NaBi(SO4)2(H2O) (NBSO) was successfully obtained via a homovalent cation substitution of the parent compound NCSO under hydrothermal conditions. The space groups of crystalline NCSO and NBSO are P3121 and P3221, respectively. Both compounds have similar connectivities which feature a three-dimensional channel structure formed by asymmetric [CeO9]15-/[BiO9]15- tricapped trigonal prisms and distorted [SO4]2- tetrahedra. The introduction of Bi3+ with larger ionic radii and stereochemically active lone-pair electrons simultaneously enhanced the SHG effect and band gap of NBSO in comparison to its parent compound NCSO. In contrast to NCSO, which possesses a narrow energy band gap (2.46 eV), NBSO displays the largest energy band gap (4.54 eV) among the reported bismuth sulfate NLO materials. Powder frequency-doubling-effect measurements exhibit that NCSO and NBSO possess phase-matchable SHG responses of 0.2 × KDP and 0.38 × KDP at 1064 nm, respectively. Theoretical studies have been implemented to further elucidate the structure-performance relationships of the two compounds. Experimental and theoretical studies both demonstrate that NBSO may be a promising nonlinear material applied in the short-wavelength region.
Collapse
Affiliation(s)
- Yingwei Lu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Xingxing Jiang
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Lin Lin
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Zheshuai Lin
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, Australian Central Territory 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
46
|
Liu K, Han J, Huang J, Wei Z, Yang Z, Pan S. SrTi(IO 3) 6·2H 2O and SrSn(IO 3) 6: distinct arrangements of lone pair electrons leading to large birefringences. RSC Adv 2021; 11:10309-10315. [PMID: 35423485 PMCID: PMC8695646 DOI: 10.1039/d0ra10726c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Three new iodates SrTi(IO3)6·2H2O, (H3O)2Ti(IO3)6, and SrSn(IO3)6 have been synthesized via a facile hydrothermal method. The three compounds have zero-dimensional crystal structures composed of one [MO6]8− (M = Ti, Sn) octahedron connected with six [IO3]− trigonal pyramids. However, the particular coordination of Sr2+ cations results in distinct arrangements of lone pair electrons in an [IO3]− trigonal pyramid, which leads to large birefringences. More importantly, this work enriches the species crystal chemistry for [M(IO3)6]2− (M = Ti, Sn) clusters-containing iodates. The distinct arrangements of [IO3]− trigonal pyramids lead to larger birefringences in SrTi(IO3)6·2H2O and SrSn(IO3)6 than that in (H3O)2Ti(IO3)6.![]()
Collapse
Affiliation(s)
- Kaitong Liu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Junben Huang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| |
Collapse
|
47
|
Wu C, Wu T, Jiang X, Wang Z, Sha H, Lin L, Lin Z, Huang Z, Long X, Humphrey MG, Zhang C. Large Second-Harmonic Response and Giant Birefringence of CeF2(SO4) Induced by Highly Polarizable Polyhedra. J Am Chem Soc 2021; 143:4138-4142. [DOI: 10.1021/jacs.1c00416] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zujian Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Hongyuan Sha
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lin Lin
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xifa Long
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
48
|
Jiao J, Jin W, Zhang M, Yang Z, Pan S. Na3AMg7(PO4)6 (A = K, Rb and Cs): Structures, properties and theoretical studies of alkali metal magnesium orthophosphates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Li XB, Hu CL, Kong F, Mao JG. Ba 3Sb 2(PO 4) 4 and Cd 3Sb 2(PO 4) 4(H 2O) 2: Two New Antimonous Phosphates with Distinct [Sb(PO 4) 2] Structure Types and Enhanced Birefringence. Inorg Chem 2021; 60:1957-1964. [PMID: 33434013 DOI: 10.1021/acs.inorgchem.0c03419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two new antimonous phosphates, namely Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2, have been successfully prepared through mild hydrothermal reactions. Ba3Sb2(PO4)4 features a 1D [Sb(PO4)2]3- chain structure separated by Ba2+ cations while Cd3Sb2(PO4)4(H2O)2 presents a 2D [Sb(PO4)2]3- layered structure with Cd2+ located at the interlayer space. The [Sb(PO4)2]3- chain in Ba3Sb2(PO4)4 is the first example of 1D antimonous phosphate structure, and Cd3Sb2(PO4)4(H2O)2 represents the first d10 transition metal antimonous phosphate. Based on UV-vis-NIR spectra, both Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2 can display large optical band gaps (4.30 and 4.36 eV, respectively). But their transparent ranges are quite different because of the coordination water of Cd3Sb2(PO4)4(H2O)2 (500-2000 and 500-1300 nm for Ba and Cd compounds). The anhydrous Ba3Sb2(PO4)4 shows high thermal stability in the nitrogen atmosphere (900 °C). Because of the incorporation of the lone pair cation of Sb(III), the birefringence of Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2 has been enhanced to 0.086 and 0.053 at 532 nm, respectively.
Collapse
Affiliation(s)
- Xiao-Bao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
50
|
Huang J, Cheng J, Lei BH, Wei Z, Pan S, Yang Z. Synergism of multiple functional chromophores significantly enhancing the birefringence in layered non-centrosymmetric chalcohalides. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01318h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with one or two functional chromophores materials, Hg3AsQ4X (Q = S, Se; X = Cl, Br, I) with multiple ones generate extremely large birefringence due to the synergism of the d10 cation Hg2+, lone pair layer of As3+ and mixed anions Q2−/X−.
Collapse
Affiliation(s)
- Junben Huang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| | - Jianian Cheng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| | - Bing-Hua Lei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
- China
| |
Collapse
|