1
|
Luo D, Zhu XW, Zhou XP, Li D. Covalent Post-Synthetic Modification of Metal-Organic Cages: Concepts and Recent Progress. Chemistry 2024; 30:e202400020. [PMID: 38293757 DOI: 10.1002/chem.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Metal-organic cages (MOCs) are supramolecular coordination complexes that have internal cavities for hosting guest molecules and exhibiting various properties. However, the functions of MOCs are limited by the choice of the building blocks. Post-synthetic modification (PSM) is a technique that can introduce new functional groups and replace existing ones on the MOCs without changing their geometry. Among many PSM methods, covalent PSM is a promising approach to modify MOCs with tailored structures and functions. Covalent PSM can be applied to either the internal cavity or the external surface of the MOCs, depending on the functionality expected to be customized. However, there are still some challenges and limitations in the field of covalent PSM of MOCs, such as the balance between the stability of MOCs and the harshness of organic reactions involved in covalent PSMs. This concept article introduces the organic reaction types involved in covalent PSM of MOCs, their new applications after modification, and summarizes and provides an outlook of this research field.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
- Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, P.R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| |
Collapse
|
2
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
3
|
Ayme JF, Bruchmann B, Karmazin L, Kyritsakas N. Transient self-assembly of metal-organic complexes. Chem Sci 2023; 14:1244-1251. [PMID: 36756320 PMCID: PMC9891378 DOI: 10.1039/d2sc06374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Implementing transient processes in networks of dynamic molecules holds great promise for developing new functional behaviours. Here we report that trichloroacetic acid can be used to temporarily rearrange networks of dynamic imine-based metal complexes towards new equilibrium states, forcing them to express complexes otherwise unfavourable in their initial equilibrium states. Basic design principles were determined for the creation of such networks. Where a complex distribution of products was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily yielded a simplified output, forcing a more structured distribution of products. Where a single complex was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily modified the properties of this complex. By doing so, the mechanical properties of an helical macrocyclic complex could be temporarily altered by rearranging it into a [2]catenane.
Collapse
Affiliation(s)
- Jean-François Ayme
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Bernd Bruchmann
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
4
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
5
|
Ouyang S, Zhang Y, Yao S, Feng L, Li P, Zhu S. The efficiency of
MSC‐based
targeted
AIE
nanoparticles for gastric cancer diagnosis and treatment: An experimental study. Bioeng Transl Med 2021; 7:e10278. [PMID: 35600644 PMCID: PMC9115694 DOI: 10.1002/btm2.10278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), due to their tumor tropism, are strongly recruited by various solid tumors and mobilized by inflammatory signals in the tumor microenvironment. However, effective cellular uptake is critical for MSC‐based drug delivery. In this study, we synthesized a spherical copolymer, polyethylenimine–poly(ε‐caprolactone), with aggregation‐induced emission (AIE) material and the anticancer drug, paclitaxel, coloaded onto its inner core. This was followed by the addition of a transactivator of transcription (TAT) peptide, a type of cell‐penetrating peptide, to modify the nanoparticles (NPs). Finally, the MSCs were employed to carry the TAT‐modified AIE‐NPs drug to the tumor sites and assist in simultaneous cancer diagnosis and targeted tumor therapy. In vitro, the TAT‐modified AIE‐NPs showed good biocompatibility, targeting, and stability in an aqueous solution besides high drug‐loading and encapsulation efficiency. In vitro, the AIE‐NPs exhibited a controllable release under a mildly acidic environment. The in vivo and in vitro studies showed high antitumor efficacy and low cytotoxicity of the AIE‐NP drug, whereas biodistribution confirmed the tumor tropism of MSCs. To summarize, the MSC‐based AIE‐NP drugs loaded with TAT possessed good biocompatibility and high antitumor efficacy via the enhanced NP‐drug uptake. In addition, the tumor tropism of MSCs provided selective drug uptake by the tumor cells and thus reduced the systemic side effects.
Collapse
Affiliation(s)
- Sushan Ouyang
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yi Zhang
- Department of Hepatobiliary Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Department of Gastroenterology The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd. Guangzhou China
| | - Ping Li
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Senlin Zhu
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
6
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origin of Ligand Effects on Stereoinversion in Pd-Catalyzed Synthesis of Tetrasubstituted Olefins. J Org Chem 2021; 86:18128-18138. [PMID: 34878798 DOI: 10.1021/acs.joc.1c02400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism and origin of ligand effects on stereoinversion of Pd-catalyzed synthesis of tetrasubstituted olefins were investigated using DFT calculations and the approach of energy decomposition analysis (EDA). The results reveal that the stereoselectivity-determining steps are different when employing different phosphine ligands. This is mainly due to the steric properties of ligands. With the bulkier Xantphos ligand, the syn/anti-to-Pd 1,2-migrations determine the stereoselectivity. While using the less hindered P(o-tol)3 ligand, the 1,3-migration is the stereoselectivity-determining step. The EDA results demonstrate that Pauli repulsion and polarization are the dominant factors for controlling the stereochemistry in 1,2- and 1,3-migrations, respectively. The origins of differences of Pauli repulsion and polarization between the two stereoselective transition states are further identified.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Laboratory for Materials of Energy Conversion and Storage of Shanxi Province and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
7
|
Zeng H, Stewart-Yates L, Casey LM, Bampos N, Roberts DA. Covalent Post-Assembly Modification: A Synthetic Multipurpose Tool in Supramolecular Chemistry. Chempluschem 2020; 85:1249-1269. [PMID: 32529789 DOI: 10.1002/cplu.202000279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Indexed: 11/10/2022]
Abstract
The use of covalent post-assembly modification (PAM) in supramolecular chemistry has grown significantly in recent years, to the point where PAM is now a versatile synthesis tool for tuning, modulating, and expanding the functionality of self-assembled complexes and materials. PAM underpins supramolecular template-synthesis strategies, enables modular derivatization of supramolecular assemblies, permits the covalent 'locking' of unstable structures, and can trigger controlled structural transformations between different assembled morphologies. This Review discusses key examples of PAM spanning a range of material classes, including discrete supramolecular complexes, self-assembled soft nanostructures and hierarchically ordered polymeric and framework materials. As such, we hope to highlight how PAM has continued to evolve as a creative and functional addition to the synthetic chemist's toolbox for constructing bespoke self-assembled complexes and materials.
Collapse
Affiliation(s)
- Haoxiang Zeng
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke Stewart-Yates
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Louis M Casey
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Bampos
- Department of Chemistry, The University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Derrick A Roberts
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|