1
|
Satoh Y, Ono Y, Takahashi R, Katayama H, Iwaoka M, Yoshino O, Arai K. Seleno-relaxin analogues: effect of internal and external diselenide bonds on the foldability and a fibrosis-related factor of endometriotic stromal cells. RSC Chem Biol 2024; 5:729-737. [PMID: 39092438 PMCID: PMC11289879 DOI: 10.1039/d4cb00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage. In this study, seleno-relaxins, SeRlx-α and SeRlx-β, which are [C11UA,C11UB] and [C10UA,C15UA] variants of H2 relaxin, respectively, were synthesized via a one-pot oxidative chain assembly (folding) from the component A- and B-chains. The substitution of SS bonds in a protein with their analogue, diselenide (SeSe) bonds, has been shown to alter the physical, chemical, and physiological properties of the protein. The surface SeSe bond (U11A-U11B) enhanced the yield of chain assembly while the internal SeSe bond (U10A-U15A) improved the reaction rate of the folding, indicating that these bridges play a major role in controlling the thermodynamics and kinetics, respectively, of the folding mechanism. Furthermore, SeRlx-α and SeRlx-β effectively reduced the expression of a tissue fibrosis-related factor in human endometriotic stromal cells. Thus, the findings of this study indicate that the S-to-Se substitution strategy not only enhances the foldability of relaxin, but also provides new guidance for the development of novel relaxin formulations for endometriosis treatment.
Collapse
Affiliation(s)
- Yuri Satoh
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
2
|
He Y, Takei T, Moroder L, Hojo H. Unexpected diselenide metathesis in selenocysteine-substituted biologically active peptides. Org Biomol Chem 2024. [PMID: 39028035 DOI: 10.1039/d4ob00921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Substitution of disulfide bonds with a diselenide bonds in peptides and proteins is an often-used strategy to increase the stability of naturally occurring peptides and proteins. In this paper, diselenide metathesis between model diselenide dimer peptides, as well as that in diselenide(s)-substituted biologically active peptides, were analyzed. Surprisingly, depending on the tertiary structure of the peptides, we observed that the metathesis reaction occurs under physiological conditions even in the absence of reducing agents, light and heating.
Collapse
Affiliation(s)
- Ying He
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Luis Moroder
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Wu H, Praveen P, Handley TNG, Chandrashekar C, Cummins SF, Bathgate RAD, Hossain MA. Total Chemical Synthesis of Aggregation-Prone Disulfide-Rich Starfish Peptides. Chemistry 2024; 30:e202400933. [PMID: 38609334 DOI: 10.1002/chem.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, The University of Melbourne, Victoria, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Victoria, Australia
| | | | | | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ross A D Bathgate
- The Florey, The University of Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Victoria, Australia
- School of Chemistry, The University of Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Laps S, Metanis N. Organic solvent enhances oxidative folding of disulfide-rich proteins. Nat Chem 2024; 16:680-681. [PMID: 38637699 DOI: 10.1038/s41557-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Pehlivan Ö, Wojtkowiak K, Jezierska A, Waliczek M, Stefanowicz P. Photochemical Transformations of Peptides Containing the N-(2-Selenoethyl)glycine Moiety. ACS OMEGA 2024; 9:16775-16791. [PMID: 38617632 PMCID: PMC11007844 DOI: 10.1021/acsomega.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The diselenide bond has attracted considerable attention due to its ability to undergo the metathesis reaction in response to visible light. In our previous study, we demonstrated visible-light-induced diselenide metathesis of selenocysteine-containing linear peptides, allowing for the convenient generation of peptide libraries. Here, we investigated the transformation of linear and cyclic peptides containing the N-(2-selenoethyl)glycine moiety. The linear peptides were highly susceptible to the metathesis reaction, whereas the cyclic systems gave only limited conversion yields of the metathesis product. In both cases, side reactions leading to the formation of mono-, di-, and polyselenides were observed upon prolonged irradiation. To confirm the radical mechanism of the reaction, the radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was tested, and it was found to induce diselenide metathesis without photochemical activation. The data were interpreted in the light of quantum-chemical simulations based on density functional theory (DFT). The simulations were performed at the B3LYP-D3BJ/def2-TZVP level of theory using a continuum solvation model (IEF-PCM) and methanol as a solvent.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Zhao Z, Laps S, Gichtin JS, Metanis N. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 2024; 8:211-229. [PMID: 38388838 DOI: 10.1038/s41570-024-00579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob S Gichtin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Weil-Ktorza O, Dhayalan B, Chen YS, Weiss MA, Metanis N. Se-Glargine: Chemical Synthesis of a Basal Insulin Analogue Stabilized by an Internal Diselenide Bridge. Chembiochem 2024; 25:e202300818. [PMID: 38149322 DOI: 10.1002/cbic.202300818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
Insulin has long provided a model for studies of protein folding and stability, enabling enhanced treatment of diabetes mellitus via analogue design. We describe the chemical synthesis of a basal insulin analogue stabilized by substitution of an internal cystine (A6-A11) by a diselenide bridge. The studies focused on insulin glargine (formulated as Lantus® and Toujeo®; Sanofi). Prepared at pH 4 in the presence of zinc ions, glargine exhibits a shifted isoelectric point due to a basic B chain extension (ArgB31 -ArgB32 ). Subcutaneous injection leads to pH-dependent precipitation of a long-lived depot. Pairwise substitution of CysA6 and CysA11 by selenocysteine was effected by solid-phase peptide synthesis; the modified A chain also contained substitution of AsnA21 by Gly, circumventing acid-catalyzed deamidation. Although chain combination of native glargine yielded negligible product, in accordance with previous synthetic studies, the pairwise selenocysteine substitution partially rescued this reaction: substantial product was obtained through repeated combination, yielding a stabilized insulin analogue. This strategy thus exploited both (a) the unique redox properties of selenocysteine in protein folding and (b) favorable packing of an internal diselenide bridge in the native state, once achieved. Such rational optimization of protein folding and stability may be generalizable to diverse disulfide-stabilized proteins of therapeutic interest.
Collapse
Affiliation(s)
- Orit Weil-Ktorza
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
8
|
Xu R, Jap E, Gubbins B, Hagemeyer CE, Karas JA. Semisynthesis of A6-A11 lactam insulin. J Pept Sci 2024; 30:e3542. [PMID: 37697741 PMCID: PMC10909544 DOI: 10.1002/psc.3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.
Collapse
Affiliation(s)
- Rong Xu
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Edwina Jap
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Ben Gubbins
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| | | | - John A. Karas
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| |
Collapse
|
9
|
Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Commun Chem 2023; 6:258. [PMID: 37989850 PMCID: PMC10663622 DOI: 10.1038/s42004-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| |
Collapse
|
10
|
Weiss MA. Real-world insulin stability and global access. Lancet Diabetes Endocrinol 2023; 11:307-309. [PMID: 37003281 DOI: 10.1016/s2213-8587(23)00066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Ghareeb H, Metanis N. Enhancing the gastrointestinal stability of salmon calcitonin through peptide stapling. Chem Commun (Camb) 2023; 59:6682-6685. [PMID: 37186112 DOI: 10.1039/d3cc01140b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salmon calcitonin (sCT) is a polypeptide hormone available in the clinic. sCT is degraded in the gastrointestinal tract in minutes. In this work, a stapled analogue of salmon calcitonin, KaY-1(R24Q), was developed using the cooperative stapling between Lys and Tyr, with R24Q substitution. The analogue exhibited an improved stability in simulated gastric and intestinal fluid and retained the ability to activate the calcitonin receptor. This work will serve as a starting point for the development of an oral sCT drug.
Collapse
Affiliation(s)
- Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Pehlivan Ö, Waliczek M, Kijewska M, Stefanowicz P. Selenium in Peptide Chemistry. Molecules 2023; 28:molecules28073198. [PMID: 37049961 PMCID: PMC10096412 DOI: 10.3390/molecules28073198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
In recent years, researchers have been exploring the potential of incorporating selenium into peptides, as this element possesses unique properties that can enhance the reactivity of these compounds. Selenium is a non-metallic element that has a similar electronic configuration to sulfur. However, due to its larger atomic size and lower electronegativity, it is more nucleophilic than sulfur. This property makes selenium more reactive toward electrophiles. One of the most significant differences between selenium and sulfur is the dissociation of the Se-H bond. The Se-H bond is more easily dissociated than the S-H bond, leading to higher acidity of selenocysteine (Sec) compared to cysteine (Cys). This difference in acidity can be exploited to selectively modify the reactivity of peptides containing Sec. Furthermore, Se-H bonds in selenium-containing peptides are more susceptible to oxidation than their sulfur analogs. This property can be used to selectively modify the peptides by introducing new functional groups, such as disulfide bonds, which are important for protein folding and stability. These unique properties of selenium-containing peptides have found numerous applications in the field of chemical biology. For instance, selenium-containing peptides have been used in native chemical ligation (NCL). In addition, the reactivity of Sec can be harnessed to create cyclic and stapled peptides. Other chemical modifications, such as oxidation, reduction, and photochemical reactions, have also been applied to selenium-containing peptides to create novel molecules with unique biological properties.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Monika Kijewska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
13
|
Narayan M. The Non-native Disulfide-Bond-Containing Landscape Orthogonal to the Oxidative Protein-Folding Trajectory: A Necessary Evil? J Phys Chem B 2022; 126:10273-10284. [PMID: 36472840 DOI: 10.1021/acs.jpcb.2c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative protein folding describes the process by which disulfide-bond-containing proteins mature from their ribosomal, fully reduced and unfolded, origins. Over the past 40 years, a number of exemplar proteins including bovine pancreatic ribonuclease A (RNaseA), bovine pancreatic trypsin inhibitor (BPTI), and hen egg-white lysozyme (HEWL), among others, have provided rich insight into the nature of the intermolecular interactions that drive the formation of the native, biologically active fold. In this Review Article, we revisit the oxidative folding process of RNase A with a focus on reconciling the role of non-native disulfide-bond-containing species that populate the oxidative folding landscape. Toward gaining such an understanding, we project the regeneration pathway onto a Cartesian coordinate system. This helps not only to recognize the magnitude of the seemingly "fruitless", non-native disulfide-bond-containing species that lie orthogonal to the "native-protein-forming" reaction progress but also to reconcile a role for their existence in the regenerative trajectory. Finally, we superimpose the folding funnel onto the regeneration trajectory to draw parallels between oxidative folders and conformational folders (proteins that lack disulfide bonds). The overall objective is to provide the reader with a semi-quantitative description of oxidative protein folding and the barriers to successful regeneration while underscoring a role of seemingly fruitless intermediates.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
14
|
Reddy KA, Sahoo DK, Moi S, Gowd KH. Conformational change due to replacement of disulfide with selenosulfide and diselenide in dipeptide vicinal cysteine loop. Comput Biol Chem 2022; 97:107635. [DOI: 10.1016/j.compbiolchem.2022.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
|
15
|
Crawley EM, Pye S, Forbes BE, Raston CL. Vortex Fluidic Mediated Oxidative Sulfitolysis of Oxytocin. Molecules 2022; 27:1109. [PMID: 35164375 PMCID: PMC8840205 DOI: 10.3390/molecules27031109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
In peptide production, oxidative sulfitolysis can be used to protect the cysteine residues during purification, and the introduction of a negative charge aids solubility. Subsequent controlled reduction aids in ensuring correct disulfide bridging. In vivo, these problems are overcome through interaction with chaperones. Here, a versatile peptide production process has been developed using an angled vortex fluidic device (VFD), which expands the viable pH range of oxidative sulfitolysis from pH 10.5 under batch conditions, to full conversion within 20 min at pH 9-10.5 utilising the VFD. VFD processing gave 10-fold greater conversion than using traditional batch processing, which has potential in many applications of the sulfitolysis reaction.
Collapse
Affiliation(s)
- Emily M. Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| | - Scott Pye
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| |
Collapse
|
16
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
17
|
Abstract
A rapid-acting insulin lispro and long-acting insulin glargine are commonly used for the treatment of diabetes. Clinical cases have described the formation of injectable amyloidosis with these insulin analogues, but their amyloid core regions of fibrils were unknown. To reveal these regions, we have analysed the hydrolyzates of insulin fibrils and its analogues using high-performance liquid chromatography and mass spectrometry methods and found that insulin and its analogues have almost identical amyloid core regions that intersect with the predicted amyloidogenic regions. The obtained results can be used to create new insulin analogues with a low ability to form fibrils. Abbreviations a.a., amino acid residues; HPLC-MS, high-performance liquid chromatography/mass spectrometry; m/z, mass-to-charge ratio; TEM, transmission electron microscopy.
Collapse
Affiliation(s)
- Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation.,State Research Center for Applied Microbiology and Biotechnology , Obolensk, Russian Federation.,The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences , Pushchino, Russian Federation
| | - Sergei Yu Grishin
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino, Russian Federation
| |
Collapse
|
18
|
Zhao Z, Shimon D, Metanis N. Chemoselective Copper-Mediated Modification of Selenocysteines in Peptides and Proteins. J Am Chem Soc 2021; 143:12817-12824. [PMID: 34346673 DOI: 10.1021/jacs.1c06101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly valuable bioconjugated molecules must be synthesized through efficient, chemoselective chemical modifications of peptides and proteins. Herein, we report the chemoselective modification of peptides and proteins via a reaction between selenocysteine residues and aryl/alkyl radicals. In situ radical generation from hydrazine substrates and copper ions proceeds rapidly in an aqueous buffer at near neutral pH (5-8), providing a variety of Se-modified linear and cyclic peptides and proteins conjugated to aryl and alkyl molecules, and to affinity label tag (biotin). This chemistry opens a new avenue for chemical protein modifications.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 91904, Israel
| | - Daphna Shimon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 91904, Israel
| | - Norman Metanis
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Chung CZ, Miller C, Söll D, Krahn N. Introducing Selenocysteine into Recombinant Proteins in Escherichia coli. Curr Protoc 2021; 1:e54. [PMID: 33566458 DOI: 10.1002/cpz1.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selenoproteins contain the 21st amino acid, selenocysteine. Selenocysteine is the only amino acid that is synthesized on its cognate tRNA, and it is inserted at specific recoded UGA stop codons via a complex translation system. Although highly similar to cysteine, selenocysteine has unique properties, including a stronger nucleophilic ability and lower reduction potential. Efforts to site-specifically incorporate selenocysteine to create recombinant selenoproteins involve a recoded UAG stop codon and expression of the necessary selenocysteine translation machinery. This article presents a protocol for expressing and purifying selenoproteins in Escherichia coli. © 2021 Wiley Periodicals LLC. Basic Protocol: Recombinant selenoprotein production in E. coli using a rewired translation system.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Corwin Miller
- Department of Biosciences, Rice University, Houston, Texas
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Department of Chemistry, Yale University, New Haven, Connecticut
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| |
Collapse
|
20
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
21
|
Diselenide crosslinks for enhanced and simplified oxidative protein folding. Commun Chem 2021; 4:30. [PMID: 36697775 PMCID: PMC9814483 DOI: 10.1038/s42004-021-00463-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 01/28/2023] Open
Abstract
The in vitro oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and is viewed as a folding model for a wide range of disulfide-rich proteins. Hirudin's folding pathway is notorious for its highly heterogeneous intermediates and scrambled isomers, limiting its folding rate and yield in vitro. Aiming to overcome these limitations, we undertake systematic investigation of diselenide bridges at native and non-native positions and investigate their effect on hirudin's folding, structure and activity. Our studies demonstrate that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the corresponding hirudin analogues, while reducing the complexity and heterogeneity of the process. Moreover, crystal structure analysis confirms that the diselenide substitutions maintained the overall three-dimensional structure of the protein and left its function virtually unchanged. The choice of hirudin as a study model has implications beyond its specific folding mechanism, demonstrating the high potential of diselenide substitutions in the design, preparation and characterization of disulfide-rich proteins.
Collapse
|
22
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
23
|
Takei T, Ando T, Takao T, Ohnishi Y, Kurisu G, Iwaoka M, Hojo H. Chemical synthesis of ferredoxin with 4 selenocysteine residues using a segment condensation method. Chem Commun (Camb) 2020; 56:14239-14242. [PMID: 33118552 DOI: 10.1039/d0cc06252a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferredoxin (Fd) is an electron carrier protein containing a [2Fe-2S] cluster. In this paper, we synthesized Se-Fd, in which four Cys residues coordinated to the cluster are substituted to selenocysteine. After the one-pot segment coupling by the thioester method, followed by deprotection and cluster loading, the desired Se-Fd was successfully obtained.
Collapse
Affiliation(s)
- Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin‐2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Claudia E. Murar
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Ufuk Karakus
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
25
|
Dhayalan B, Chen YS, Phillips NB, Swain M, Rege NK, Mirsalehi A, Jarosinski M, Ismail-Beigi F, Metanis N, Weiss MA. Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights the Distinction between External and Internal Diselenide Bridges. Chemistry 2020; 26:4695-4700. [PMID: 31958351 DOI: 10.1002/chem.202000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/31/2023]
Abstract
Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mamuni Swain
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ali Mirsalehi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mark Jarosinski
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Michael A Weiss
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
26
|
|
27
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin-2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020; 59:8425-8429. [PMID: 32032465 DOI: 10.1002/anie.201916053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Chemical protein synthesis allows the construction of well-defined structural variations and facilitates the development of deeper understanding of protein structure-function relationships and new protein engineering strategies. Herein, we report the chemical synthesis of interleukin-2 (IL-2) variants on a multimilligram scale and the formation of non-natural disulfide mimetics that improve stability against reduction. The synthesis was accomplished by convergent KAHA ligations; the acidic conditions of KAHA ligation proved to be valuable for the solubilization of the hydrophobic segments of IL-2. The bioactivity of the synthetic IL-2 and its analogues were shown to be equipotent to recombinant IL-2 and exhibit improved stability against reducing agents.
Collapse
Affiliation(s)
- Claudia E Murar
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
28
|
Dolle A, Reddy KKA, Gunaga SS, Krishnamurthy K, Senapati DK, Rana A, Sindogi K, Biswal HS, Raghothama S, Gowd KH. Characterization of (Boc-Cys/Sec-NHMe) 2 and (Boc-Cys/Sec-OMe) 2 : Evidence of local conformational difference between disulfide and diselenide. J Pept Sci 2020; 26:e3245. [PMID: 32103604 DOI: 10.1002/psc.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Abstract
Conformations of disulfide and diselenide were compared in (Boc-Cys/Sec-NHMe)2 and (Boc-Cys/Sec-OMe)2 using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT), and circular dichroism (CD) spectroscopy. Conformations of disulfide/diselenide in polypeptides are defined based on the sign of side chain torsion angle χ3 (-CH2 -S/Se-S/Se-CH2 -); negative indicates left-handed and positive indicates right-handed orientation. In the crystals of (Boc-Cys-OMe)2 and (Boc-Sec-OMe)2 , the disulfide exhibits a left-handed and the diselenide a right-handed orientation. Characterization of cystine and selenocystine derivatives in solution using 1 H-NMR, natural abundant 77 Se NMR, 2D-ROESY, and chemical shift analysis coupled to DMSO titration has indicated the symmetrical nature and antiparallel orientation of Cys/Sec residues about the disulfide/diselenide bridges. Structural calculations of cystine and selenocystine derivatives using DFT further support the antiparallel orientation of Cys/Sec residues about disulfide/diselenide. The far-ultraviolet (UV) region CD spectra of cystine and selenocystine derivatives have exhibited the negative Cotton effect (CE) for disulfide and positive for diselenide confirming the difference in the conformational preference of disulfide and diselenide. In the previously reported polymorphic structure of (Boc-Sec-OMe)2 , the diselenide has right-handed orientation. In the X-ray structures of disulfide and diselenide analogues of Escherichia coli protein encoded by curli specific gene C (CgsC) retrieved from Protein Databank (PDB), disulfide has left-handed and the diselenide right-handed orientation. The current report provides the evidence for the local conformational difference between a disulfide and a diselenide group under unconstrained conditions, which may be useful for the rational replacement of disulfide by diselenide in polypeptide chains.
Collapse
Affiliation(s)
- Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - K Kasi Amarnath Reddy
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Shubha Shridhar Gunaga
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore, Karnataka, India
| | - Kiran Krishnamurthy
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Abhijit Rana
- School of Chemical Sciences, NISER, Bhubaneswar, Odisha, India
| | - Kishorkumar Sindogi
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
29
|
Zhang M, Zhang Y, Wu B, Peng Y, Simair AA, Siegel GW, Lu C, Chen T. Intein-mediated recombinant expression of monomeric B22Asp desB30 insulin. BMC Biotechnol 2020; 20:3. [PMID: 31918694 PMCID: PMC6953245 DOI: 10.1186/s12896-020-0598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin controls hyperglycemia caused by diabetes, and virtually all treatments require exogenous insulin. However, the product's extensive post-translational modifications have hindered the manufacture of recombinant insulin. RESULT Here we report a novel production method for a monomeric B22Asp desB30 insulin analog (B22D desB30 insulin). Its precursor, DPIP, is fused to an N-terminal chitin-binding domain and intein self-cleavage tag. The fusion protein is expressed and purified from E. coli and immobilized on chitin resins. DPIP is then released using an optimized pH shift and converted to mature insulin via trypsin digest. The resulting product appears monomeric, > 90% pure and devoid of any exogenous enzyme. CONCLUSION Thus, biologically active insulin analog can be efficiently produced in bacteria and potentially applicable in the treatment of human diabetes.
Collapse
Affiliation(s)
- Minmin Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Yunlong Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Bingnan Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Yanhao Peng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Altaf Ahmed Simair
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Geoffery W Siegel
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Division, University of Michigan Medical School, Ann Arbor, MI, 10, USA
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China.
| | - Ting Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China.
| |
Collapse
|
30
|
Zhao Z, Metanis N. Utilizing Copper-Mediated Deprotection of Selenazolidine for Cyclic Peptide Synthesis. J Org Chem 2019; 85:1731-1739. [DOI: 10.1021/acs.joc.9b02644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhenguang Zhao
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
31
|
Zheng N, Karra P, VandenBerg MA, Kim JH, Webber MJ, Holland WL, Chou DHC. Synthesis and Characterization of an A6-A11 Methylene Thioacetal Human Insulin Analogue with Enhanced Stability. J Med Chem 2019; 62:11437-11443. [PMID: 31804076 PMCID: PMC7217704 DOI: 10.1021/acs.jmedchem.9b01589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael A. VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Matthew J. Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
32
|
Moroder L, Musiol H. Amino acid chalcogen analogues as tools in peptide and protein research. J Pept Sci 2019; 26:e3232. [DOI: 10.1002/psc.3232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Luis Moroder
- Bioorganic ChemistryMax‐Planck Institute of Biochemistry Martinsried Germany
| | - Hans‐Jürgen Musiol
- Bioorganic ChemistryMax‐Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
33
|
Metanis N, Notis Dardashti R, Mousa R, Weil-Ktorza O. Miklós Bodanszky Award Lecture: Selective chalcogen chemistry to study protein science. J Pept Sci 2019; 25:e3204. [PMID: 31407415 DOI: 10.1002/psc.3204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
In recent decades, chemical protein synthesis and the development of chemoselective reactions-including ligation reactions-have led to significant breakthroughs in protein science. Among them are a better understanding of protein structure-function relationships, the study of protein posttranslational modifications, exploration of protein design, unnatural amino acid incorporation, and the study of therapeutic proteins and protein folding. Chalcogen chemistry, especially that of sulfur and selenium, is quite rich, and we have witnessed continuous progress in this field in recent years. In this short review, we will instead summarize three stories that we have recently presented on chalcogen chemistry and its impact on protein science, which was presented in the Miklós Bodanszky Award Lecture at the 35th European Peptide Society Meeting in Dublin, Ireland, 26 August 2018.
Collapse
Affiliation(s)
- Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Weil-Ktorza
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|