1
|
Wu S, Yang X, Zhou J, Yu W. Copper-catalysed bromine atom transfer cyclisation in SDS micelles. Chem Commun (Camb) 2024. [PMID: 39499534 DOI: 10.1039/d4cc03903c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The atom transfer radical cyclisation (ATRC) of non-activated alkyl bromides was realized under blue light irradiation in carbonate-buffered aqueous SDS solution using a catalytic system of CuBr2, Me6-TREN and ascorbic acid. The beneficial effect of SDS micelles can be accounted for by the activation of the C-Br bond as well as by the suppression of competitive reductive cyclisation.
Collapse
Affiliation(s)
- Shuoren Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianlin Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Russo C, Brunelli F, Tron GC, Giustiniano M. Visible-Light Photoredox Catalysis in Water. J Org Chem 2022; 88:6284-6293. [PMID: 35700388 DOI: 10.1021/acs.joc.2c00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of water in organic synthesis draws attention to its green chemistry features and its unique ability to unveil unconventional reactivities. Herein, literature about the use of water as a reaction medium under visible-light photocatalytic conditions is summarized in order to highlight challenges and opportunities. Accordingly, this Synopsis has been divided into four different sections focused on (1) the unconventional role of water in photocatalytic reactions, (2) in-/on-water reactions, (3) water-soluble photocatalysts, and (4) photomicellar catalytic systems.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Francesca Brunelli
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
3
|
Cybularczyk-Cecotka M, Predygier J, Crespi S, Szczepanik J, Giedyk M. Photocatalysis in Aqueous Micellar Media Enables Divergent C–H Arylation and N-Dealkylation of Benzamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jędrzej Predygier
- Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Stefano Crespi
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden
| | - Joanna Szczepanik
- Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maciej Giedyk
- Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Wei D, Li X, Shen L, Ding Y, Liang K, Xia C. Phenolate anion-catalyzed direct activation of inert alkyl chlorides driven by visible light. Org Chem Front 2021. [DOI: 10.1039/d1qo01128f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A photochemical activation of inert alkyl chlorides catalyzed by phenolate anions was developed for C–O bond formation, dehalogenation, and cyclization under mild conditions.
Collapse
Affiliation(s)
- Delian Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xipan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Bhattacharyya A, De Sarkar S, Das A. Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ayan Bhattacharyya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246. India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
|
7
|
Santos MS, Cybularczyk‐Cecotka M, König B, Giedyk M. Minisci C−H Alkylation of Heteroarenes Enabled by Dual Photoredox/Bromide Catalysis in Micellar Solutions**. Chemistry 2020; 26:15323-15329. [DOI: 10.1002/chem.202002320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Marilia S. Santos
- Institute of Organic Chemistry Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | | | - Burkhard König
- Institute of Organic Chemistry Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
8
|
Yu D, To WP, Tong GSM, Wu LL, Chan KT, Du L, Phillips DL, Liu Y, Che CM. Luminescent tungsten(vi) complexes as photocatalysts for light-driven C-C and C-B bond formation reactions. Chem Sci 2020; 11:6370-6382. [PMID: 32874518 PMCID: PMC7448528 DOI: 10.1039/d0sc01340d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
The realization of photocatalysis for practical synthetic application hinges on the development of inexpensive photocatalysts which can be prepared on a large scale. Herein an air-stable, visible-light-absorbing photoluminescent tungsten(vi) complex which can be conveniently prepared at the gram-scale is described. This complex could catalyse photochemical organic transformation reactions including borylation of aryl halides, such as aryl chloride, reductive coupling of benzyl bromides for C-C bond formation, reductive coupling of phenacyl bromides, and decarboxylative coupling of redox-active esters of alkyl carboxylic acid with high product yields and broad functional group tolerance.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China .
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Kaai-Tung Chan
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Yungen Liu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China .
| | - Chi-Ming Che
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China .
- State Key Laboratory of Synthetic Chemistry , HKU-CAS Joint Laboratory on New Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU Shenzhen Institute of Research and Innovation Shenzhen , Guangdong 518055 , China
| |
Collapse
|
9
|
Glaser F, Kerzig C, Wenger OS. Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915762] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix Glaser
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Christoph Kerzig
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Oliver S. Wenger
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
10
|
Glaser F, Kerzig C, Wenger OS. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angew Chem Int Ed Engl 2020; 59:10266-10284. [PMID: 31945241 DOI: 10.1002/anie.201915762] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Indexed: 01/28/2023]
Abstract
The energy of visible photons and the accessible redox potentials of common photocatalysts set thermodynamic limits to photochemical reactions that can be driven by traditional visible-light irradiation. UV excitation can be damaging and induce side reactions, hence visible or even near-IR light is usually preferable. Thus, photochemistry currently faces two divergent challenges, namely the desire to perform ever more thermodynamically demanding reactions with increasingly lower photon energies. The pooling of two low-energy photons can address both challenges simultaneously, and whilst multi-photon spectroscopy is well established, synthetic photoredox chemistry has only recently started to exploit multi-photon processes on the preparative scale. Herein, we have a critical look at currently developed reactions and mechanistic concepts, discuss pertinent experimental methods, and provide an outlook into possible future developments of this rapidly emerging area.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
11
|
Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0369-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Kerzig C, Wenger OS. Reactivity control of a photocatalytic system by changing the light intensity. Chem Sci 2019; 10:11023-11029. [PMID: 32206254 PMCID: PMC7069242 DOI: 10.1039/c9sc04584h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
By using simple optics such as a lens, switching between one- and two-photon driven reaction mechanisms became feasible, which allows the control over the main products of photochemical reactions.
We report a novel light-intensity dependent reactivity approach allowing us to selectively switch between triplet energy transfer and electron transfer reactions, or to regulate the redox potential available for challenging reductions. Simply by adjusting the light power density with an inexpensive lens while keeping all other parameters constant, we achieved control over one- and two-photon mechanisms, and successfully exploited our approach for lab-scale photoreactions using three substrate classes with excellent selectivities and good product yields. Specifically, our proof-of-concept study demonstrates that the irradiation intensity can be used to control (i) the available photoredox reactivity for reductive dehalogenations to selectively target either bromo- or chloro-substituted arenes, (ii) the photochemical cis–trans isomerization of olefins versus their photoreduction, and (iii) the competition between hydrogen atom abstraction and radical dimerization processes.
Collapse
Affiliation(s)
- Christoph Kerzig
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland . ;
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland . ;
| |
Collapse
|