1
|
Gayen S, Shyamal S, Mohapatra S, Antharjanam PKS, Ghosh S. B-P Coupling: Metal Stabilized Phosphinoborate Complexes. Chemistry 2024; 30:e202302362. [PMID: 38009462 DOI: 10.1002/chem.202302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
In an effort to establish B-P coupling reactions without the use of phosphine-borane dehydrocoupling agent, we have developed a new synthetic methodology employing group 8 metal σ-borate complex [{κ3 -H,S,S'-BH2 L2 }Ru{κ3 -H,H,S-BH3 L}] (L=NC5 H4 S), 1. Treatment of 1 with chlorodiphenyl phosphine (PPh2 Cl) yielded 1,5-P,S chelated Ru-dihydridoborate species [PPh2 H{κ3 -H,H,S-BH(OH)L}Ru{κ2 -P,S-(Ph2 P)BH2 L}], 2. The insertion of phosphine moiety (PPh2 ) by the cleavage of 3c-2e σ(Ru… H-B) bonding interaction led to the formation of B-P bond. The κ2 -P,S chelated six-membered ring adopted a boat conformation in complex 2. The heterocycle is made of all different atoms, which is one of the rarest examples of heteroatomic ring systems. Theoretical outcomes demonstrated the electronic insight of B-P coupling and stabilization through transition metal. In order to explore an alternate route of B-P bond formation, we have further explored the reaction of 1 and Ru-bis(dihydridoborate) complex, 5 with secondary phosphine oxide (SPO). Although, thermolysis of 1 with diphenylphosphine oxide yielded analogous σ-borate complex 3, the similar reaction of 5 at room temperature led to the formation of novel phosphinous(III) acid incorporated Ru(σ-borate)(dihydridoborate) complex, 6. In a similar fashion, the reaction of 5 with phosphite ligand generated Ru(σ-borate)(dihydridoborate) complex, 7, which is analogous to 6.
Collapse
Affiliation(s)
- Sourav Gayen
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | - Sampad Shyamal
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | - Stutee Mohapatra
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | | | - Sundargopal Ghosh
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Hsiang SJ, Hayes PG. Rhodium-Mediated Dehydrogenation of Hydroboranes and Group 14 Compounds: Base-Stabilized Silylene and Germylene Complexes vs. Transmetalation. Chemistry 2024; 30:e202302925. [PMID: 37931068 DOI: 10.1002/chem.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Monocarbonyl rhodium complex LRh(CO), 1, which is stabilized by a pyrrole-based bis(phosphinimine) pincer ligand (L=κ3 -NNN'=2,5-[i Pr2 P=N(4-i PrC6 H4 )]2 -N'(C4 H2 )- ), serves as a versatile platform for the dehydrogenation of group 14 substrates. Reaction with primary and secondary silanes and germanes (MesSiH3 , Et2 SiH2 , Ph2 GeH2 , t BuGeH3 ; Mes=mesityl) liberates H2 and yields base-stabilized tetrylene compounds of the form κ2 -L(CO)Rh(ER2 ) (E=Si: R=Mes, H, 2; R=Et, 5; E=Ge: R=Ph, 6; R=t Bu, H, 8). The ":ER2 " fragment in these species bridges between the rhodium center and a phosphinimine donor. Preliminary reactions between pinacol (Pin) and κ2 -L(CO)Rh(ER2 ), E=Si, Ge, indicate that such complexes can serve as silylene and germylene synthons, releasing :ER2 and catalytically generating PinER2 . In contrast, combination of complex 1 and MesGeH3 does not yield the anticipated dehydrogenation product, but rather, transmetalation similar to that observed upon reaction between 1 and 3,5-dimethylphenylborane prevails.
Collapse
Affiliation(s)
- Shou-Jen Hsiang
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., T1K 3M4, Lethbridge, AB, Canada
| | - Paul G Hayes
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., T1K 3M4, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Yates JL, Thompson BL, Korchemniy EP, Rooney-Sailand BA, Glasser CM, Allen CJ, Wheeler KA, Abbey ER. One-Pot Synthesis of [N(PPh 3) 2] + Monoorganoborohydride Salts from Potassium Organotrifluoroborates Yields Unusual Crystalline Compounds for X-ray Crystallography. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James L. Yates
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Brena L. Thompson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Eugene P. Korchemniy
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Benjamin A. Rooney-Sailand
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Craig M. Glasser
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Caleb J. Allen
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Kraig A. Wheeler
- Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| | - Eric R. Abbey
- Department of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, Washington 99004, United States
| |
Collapse
|
4
|
Wei Y, Wang T. From trihydroborates to bisborylenes: a route to dinuclear bisborylene complexes. Chem Commun (Camb) 2022; 58:4659-4662. [PMID: 35319051 DOI: 10.1039/d2cc01078j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new route for the synthesis of dinuclear bisborylene complexes was described. A series of novel diruthenium bisborylenes were prepared through unprecedented triple B-H oxidative addition of trihydroborates with concomitant hydrogen liberation. Conversion of trihydroborates to bisborylenes involved the formation of tris(σ-B-H) borate as the crucial intermediate stage.
Collapse
Affiliation(s)
- Yongliang Wei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
5
|
Kar S, Kar K, Bairagi S, Bhattacharyya M, Chowdhury MG, Ghosh S. Chalcogen stabilized borate complexes of tantalum. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Zhang S, Zhai X, Song Y, Feng L, Tung CH, Wang W. Insertion of BH3 into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengnan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Yike Song
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, People’s Republic of China
| |
Collapse
|
7
|
Saha K, Roy DK, Dewhurst RD, Ghosh S, Braunschweig H. Recent Advances in the Synthesis and Reactivity of Transition Metal σ-Borane/Borate Complexes. Acc Chem Res 2021; 54:1260-1273. [PMID: 33565872 DOI: 10.1021/acs.accounts.0c00819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coordination of an element-element σ bond to a transition metal (TM) is both a fundamentally intriguing binding mode and of critical importance to metal-mediated bond activation mechanisms and catalysis, particularly the hotly contested field of C-H activation. TM σ complexes of dihydrogen (i.e., H-H) and silanes (H-SiR3) have been extensively studied, the latter being of interest as models for the (generally unstable and unisolable) σ complexes of alkanes (i.e., H-CR3). TM σ complexes of hydroboranes and hydroborates (i.e., H-BR2, H-BR3, (H-)2BR2) are somewhat less well studied but similarly have relevance to catalytic borylation reactions that are of high current interest to organic synthesis. Our two research groups have made significant contributions to elaborating the family of σ-borane/-borate complexes using two distinct approaches: while the Ghosh group generally starts from hydrogen-rich tetracoordinate boron species such as borates, the Braunschweig group starts from hypovalent and/or hypocoordinate boron building blocks. Through these two approaches, a wide range of species containing one or two σ-bound B-H ligands have been prepared, some with additional chelating donor sites. Over the past 2 years, the body of work on σ-borane/-borate complexes from our two research groups has significantly expanded, with a combined nine published articles in 2019-2020 alone. Very recent work from the Braunschweig group has led to the synthesis of the first bis(σ)-borane complexes of group 6 metals, as well as the synthesis of a series of novel bis(σ)-borane and bis(σ)-borate complexes of ruthenium and iridium, the former being useful precursors for pentacoordinate borylene complexes of Ru. Recent work from the Ghosh group has uncovered a remarkable diversity of structures with σ(B-H)-bound ligands from the combination of borohydrides and nitrogen/chalcogen-containing groups and heterocycles. These reactions, while in some cases producing conventional scorpionate-type chelating products, more frequently undergo fascinating rearrangements with unpredictable outcomes. This Account aims to highlight this recent acceleration of research progress in this area, particularly the distinct but related approaches of-and complexes produced by-our two research groups, in addition to relevant works from other groups where appropriate.
Collapse
Affiliation(s)
- Koushik Saha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dipak Kumar Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Macha BB, Dhara D, Radacki K, Dewhurst RD, Braunschweig H. Intermetallic transfer of unsymmetrical borylene fragments: isolation of the second early-transition-metal terminal borylene complex and other rare species. Dalton Trans 2020; 49:17719-17724. [PMID: 33237059 DOI: 10.1039/d0dt03557b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal borylene complexes of the type [(OC)5M[double bond, length as m-dash]BN(SiMe3)(tBu)] (M = Cr, Mo, W) have been synthesised by salt elimination of the corresponding dibromoborane and the dianionic metallates Na2[M(CO)5]. The borylene complexes have been characterised by multinuclear solution-state NMR spectroscopy and solid-state molecular structure determination. The group 6 borylene complexes can be used to effectively transfer the borylene ligand to other transition metal complexes by replacing one or two carbonyl ligands upon irradiation of the reaction mixture with UV light. This borylene transfer reaction led to the formation of new terminal and bridging borylene complexes which cannot be formed by the corresponding salt elimination reactions, including a rare example of a bis(terminal borylene) complex and only the second reported terminal borylene complex of an early transition metal (vanadium).
Collapse
Affiliation(s)
- Bret B Macha
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
9
|
MacNeil CS, Hsiang SJ, Hayes PG. Reversible dehydrogenation of a primary aryl borane. Chem Commun (Camb) 2020; 56:12323-12326. [PMID: 32930270 DOI: 10.1039/d0cc05503d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The consecutive activation of B-H bonds in mesitylborane (H2BMes; Mes = 2,4,6-(CH3)3C6H2) by a 16-electron rhodium(i) monocarbonyl complex, (iPrNNN)Rh(CO) (1-CO; iPrNNN = 2,5-[iPr2P[double bond, length as m-dash]N(4-iPrC6H4)]2N(C4H2)-) is described. Dehydrogenative extrusion of the {BMes} fragment led to the isolation of (iPrNNN)(CO)RhBMes (1-BMes). Addition of H2 gas to 1-BMes regenerated 1-CO and H2BMes, highlighting the ability of 1-CO to facilitate interconversion of {BMes} with dihydrogen. Reactivity studies revealed that 1-BMes promotes formal group transfer and that {BAr} fragments accessed by dehydrogenation are reactive entities.
Collapse
Affiliation(s)
- Connor S MacNeil
- Department of Chemistry and Biochemistry and Canadian Centre for Research in Advanced Fluorine Technologies, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada.
| | - Shou-Jen Hsiang
- Department of Chemistry and Biochemistry and Canadian Centre for Research in Advanced Fluorine Technologies, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada.
| | - Paul G Hayes
- Department of Chemistry and Biochemistry and Canadian Centre for Research in Advanced Fluorine Technologies, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
10
|
Price JS, DeJordy DM, Emslie DJH, Britten JF. Reactions of [(dmpe) 2MnH(C 2H 4)]: synthesis and characterization of manganese(i) borohydride and hydride complexes. Dalton Trans 2020; 49:9983-9994. [PMID: 32627789 DOI: 10.1039/d0dt01726d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactions of trans-[(dmpe)2MnH(C2H4)] (1) with BH3(NMe3), 9-BBN, and HBMes2 yielded the manganese(i) borohydride complexes [(dmpe)2Mn(μ-H)2BR2] (3: R = H, 4: R2 = C8H14, 5: R = Mes). The reaction of 1 with BH3(NMe3) proceeds via ethylene substitution. By contrast, a detuerium labelling study indicates that the reaction of 1 with HBMes2 involves initial isomerization of 1 to an unobserved 5-coordinate ethyl intermediate, [(dmpe)2MnEt], which reacts with the hydroborane to afford EtBR2 and [(dmpe)2MnH], followed by reaction with a second equivalent of hydroborane to generate 5 (an analogous pathway is likely followed for other base-free hydroboranes such as 9-BBN). Identification of 3-5 as κ2-borohydride complexes, as opposed to boryl dihydride or hydroborane hydride isomers, is supported by 11B NMR spectroscopy, X-ray diffraction, and Atoms in Molecules calculations. Two byproducts were observed in the syntheses of 3-5: [{(dmpe)2MnH}2(μ-dmpe)] (6) and [(dmpe)2MnH(κ1-dmpe)] (7). These complexes were independently prepared by exposure of 1 to free dmpe under an atmosphere of Ar or H2, and the generality of this synthetic route was demonstrated by the reaction of 1 with PMe3 (under H2) to form [(dmpe)2MnH(PMe3)] (8). Complexes 6-8 can exist as isomers with either a trans or a cis relationship between the hydride and κ1-coordinated phosphine ligands on manganese. trans to cis isomerization of 6-8 is photochemically induced, whereas the reverse reaction occurs under thermal conditions. X-ray crystal structures were obtained for 3-5, trans,trans-6, cis,cis-6, trans-7, and trans-8.
Collapse
Affiliation(s)
- Jeffrey S Price
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | |
Collapse
|
11
|
Lenczyk C, Roy DK, Oberdorf K, Nitsch J, Dewhurst RD, Radacki K, Halet J, Marder TB, Bickelhaupt M, Braunschweig H. Toward Transition-Metal-Templated Construction of Arylated B 4 Chains by Dihydroborane Dehydrocoupling. Chemistry 2019; 25:16544-16549. [PMID: 31663648 PMCID: PMC6972581 DOI: 10.1002/chem.201904772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 01/24/2023]
Abstract
The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH2 ] (Dur=2,3,5,6-Me4 C6 H) and [(Me3 Si)2 NBH2 ] led to the formation of bridging borylene complexes of the form [(Cp*RuH)2 BR] (Cp*=C5 Me5 ; 1 a: R=Dur; 1 b: R=N(SiMe3 )2 ) through oxidative addition of the B-H bonds with concomitant hydrogen liberation. Employing the more electron-deficient dihydroborane [3,5-(CF3 )2 -C6 H3 BH2 ] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)4 [(Cp*Ru)2 B4 H5 (3,5-(CF3 )2 C6 H3 )4 ] (4), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido-[1,2(Cp*Ru)2 (μ-H)B4 H9 ] (I) indicates that there appear to be no classical σ-bonds between the boron atoms in complex I, whereas in the case of 4 the B4 chain better resembles a network of three B-B σ bonds, the central bond being significantly weaker than the other two.
Collapse
Affiliation(s)
- Carsten Lenczyk
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Dipak Kumar Roy
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany,Discipline of ChemistryIndian Institute of Technology IndoreKhandwa Road, SimrolIndore453552, M.P.India
| | - Kai Oberdorf
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jörn Nitsch
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Krzysztof Radacki
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jean‐François Halet
- Univ Rennes CNRSInstitut des Sciences Chimiques de RennesUMR 622635000RennesFrance
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083, 1081 HV Amsterdam (The Netherlands), and Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany), and Institute for, Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Lenczyk C, Roy DK, Nitsch J, Radacki K, Rauch F, Dewhurst RD, Bickelhaupt FM, Marder TB, Braunschweig H. Steric Effects Dictate the Formation of Terminal Arylborylene Complexes of Ruthenium from Dihydroboranes. Chemistry 2019; 25:13566-13571. [PMID: 31433081 PMCID: PMC7079023 DOI: 10.1002/chem.201902890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 11/08/2022]
Abstract
The steric and electronic properties of aryl substituents in monoaryl borohydrides (Li[ArBH3 ]) and dihydroboranes were systematically varied and their reactions with [Ru(PCy3 )2 HCl(H2 )] (Cy: cyclohexyl) were studied, resulting in bis(σ)-borane or terminal borylene complexes of ruthenium. These variations allowed for the investigation of the factors involved in the activation of dihydroboranes in the synthesis of terminal borylene complexes. The complexes were studied by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and density functional theory (DFT) calculations. The experimental and computational results suggest that the ortho-substitution of the aryl groups is necessary for the formation of terminal borylene complexes.
Collapse
Affiliation(s)
- Carsten Lenczyk
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dipak Kumar Roy
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, M.P., India
| | - Jörn Nitsch
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Florian Rauch
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, (The Netherlands), and Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Todd B Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg (Germany), and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|