1
|
Chen L, Thompson JDF, Jamieson C. An Electrosynthesis of 1,3,4-Oxadiazoles from N-Acyl Hydrazones. Chemistry 2024:e202403128. [PMID: 39291449 DOI: 10.1002/chem.202403128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
The 1,3,4-oxadiazole is a widely encountered motif in the areas of pharmaceuticals, materials, and agrochemicals. This work has established a mediated electrochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from N-acyl hydrazones. Using DABCO as the optimal redox mediator has enabled a mild oxidative cyclisation, without recourse to stoichiometric oxidants. In contrast to previous methods, this indirect electrochemical oxidation has enabled a broad range of substrates to be accessed, with yields of up to 83 %, and on gram scale. The simplicity of the method has been further demonstrated by the development of a one-pot procedure, directly transforming readily available aldehydes and hydrazides into valuable heterocycles.
Collapse
Affiliation(s)
- Luke Chen
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom
| | - James D F Thompson
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Craig Jamieson
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom
| |
Collapse
|
2
|
Wang C, Xuan B, Huang C, Yao J, Wu C, Sun T. Optimization and Scale-Up of a Continuous Flow Synthesis of Dapagliflozin. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Chunchao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, P.R. China
| | - Boxin Xuan
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, P.R. China
| | - Cheng Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, P.R. China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, P.R. China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, P.R. China
| |
Collapse
|
3
|
Brégent T, Ivanova MV, Poisson T, Jubault P, Legros J. Continuous‐Flow Divergent Lithiation of 2,3‐Dihalopyridines: Deprotolithiation versus Halogen Dance. Chemistry 2022; 28:e202202286. [PMID: 36200571 PMCID: PMC10092453 DOI: 10.1002/chem.202202286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/07/2022]
Abstract
We describe herein the first halogen dance (HD) in continuous flow on 2-chloro-3-bromopyridine by selectively trapping a (pyridin-4-yl)lithium species that is known to undergo the halogen-dance process. In addition, this lithiated intermediate was trapped at lower temperature before the HD occurs. The HD process was extended to fluoro-iodopyridines by using various electrophiles to afford 28 examples with yields ranging from 42 to 97 % with very short residence times. Finally, scale up of the reaction was demonstrated, affording a promising space-time yield (STY) of 4.2 kg.h-1 .L-1 .
Collapse
Affiliation(s)
- Thibaud Brégent
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Maria V. Ivanova
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Poisson
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Philippe Jubault
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Julien Legros
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
4
|
Wietelmann U, Klösener J, Rittmeyer P, Schnippering S, Bats H, Stam W. Continuous Processing of Concentrated Organolithiums in Flow Using Static and Dynamic Spinning Disc Reactor Technologies. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrich Wietelmann
- Albemarle Germany GmbH, Industrial Park Hoechst, D-65926 Frankfurt am Main, Germany
| | - Johannes Klösener
- Albemarle Germany GmbH, Industrial Park Hoechst, D-65926 Frankfurt am Main, Germany
| | - Peter Rittmeyer
- Albemarle Germany GmbH, Industrial Park Hoechst, D-65926 Frankfurt am Main, Germany
| | - Stefan Schnippering
- Albemarle Germany GmbH, Industrial Park Hoechst, D-65926 Frankfurt am Main, Germany
| | - Henk Bats
- Flowid, Achtseweg Zuid 157C, NL-5651 GW Eindhoven, The Netherlands
| | - Wouter Stam
- Flowid, Achtseweg Zuid 157C, NL-5651 GW Eindhoven, The Netherlands
| |
Collapse
|
5
|
Donnelly K, Baumann M. Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography. Beilstein J Org Chem 2022; 18:232-239. [PMID: 35280956 PMCID: PMC8895036 DOI: 10.3762/bjoc.18.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
An efficient continuous flow process is reported for the synthesis of various 1,3,4-oxadiazoles via an iodine-mediated oxidative cyclisation approach. This entails the use of a heated packed-bed reactor filled with solid K2CO3 as a base. Using DMSO as solvent, this flow method generates the target heterocycles within short residence times of 10 minutes and in yields up to 93%. Scale-up of this flow process was achieved (34 mmol/h) and featured an integrated quenching and extraction step. Lastly, the use of an automated in-line chromatography system was exploited to realise a powerful flow platform for the generation of the heterocyclic targets.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Khan SR, Saini S, Naresh K, Kumari A, Aniya V, Khatri PK, Ray A, Jain SL. CO 2 as oxidant: an unusual light-assisted catalyst free oxidation of aldehydes to acids under mild conditions. Chem Commun (Camb) 2022; 58:2208-2211. [PMID: 35072682 DOI: 10.1039/d1cc06057k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel visible light-driven catalyst-free oxidation of aldehydes using CO2 both in batch and flow photoreactors to get corresponding acids along with the formation of CO in the effluent gas is described.
Collapse
Affiliation(s)
- Shafiur Rehman Khan
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - K Naresh
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Alka Kumari
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Vineet Aniya
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Praveen K Khatri
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Anjan Ray
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Director, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248004, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| |
Collapse
|
7
|
Wong JYF, Thomson CG, Vilela F, Barker G. Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chem Sci 2021; 12:13413-13424. [PMID: 34777760 PMCID: PMC8528014 DOI: 10.1039/d1sc04176b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tetrazoles play a prominent role in medicinal chemistry due to their role as carboxylate bioisosteres but have largely been overlooked as C-H functionalisation substrates. We herein report the development of a high-yielding and general procedure for the heterobenzylic C-H functionalisation of 5-alkyltetrazoles in up to 97% yield under batch conditions using a metalation/electrophilic trapping strategy. Through the use of thermal imaging to identify potentially unsafe exotherms, a continuous flow procedure using a flash chemistry strategy has also been developed, allowing products to be accessed in up to 95% yield. This enabled an extremely high productivity rate of 141 g h-1 to be achieved on an entry-level flow system.
Collapse
Affiliation(s)
- Jeff Y F Wong
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Christopher G Thomson
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Filipe Vilela
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| |
Collapse
|
8
|
Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021; 86:13943-13954. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation and functionalization, under continuous flow conditions, of two different lithiated four-membered aza-heterocycles is reported. N-Boc-3-iodoazetidine acts as a common synthetic platform for the genesis of C3-lithiated azetidine and C2-lithiated azetine depending on the lithiation agent. Flow technology enables easy handling of such lithiated intermediates at much higher temperatures compared to batch processing. Flow technology combined with cyclopentylmethyl ether as an environmentally responsible solvent allows us to address sustainability concerns.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Debora Cannillo
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
9
|
González-Esguevillas M, Fernández DF, Rincón JA, Barberis M, de Frutos O, Mateos C, García-Cerrada S, Agejas J, MacMillan DWC. Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS CENTRAL SCIENCE 2021; 7:1126-1134. [PMID: 34345665 PMCID: PMC8323116 DOI: 10.1021/acscentsci.1c00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 05/03/2023]
Abstract
Photoredox catalysis has emerged as a powerful and versatile platform for the synthesis of complex molecules. While photocatalysis is already broadly used in small-scale batch chemistry across the pharmaceutical sector, recent efforts have focused on performing these transformations in process chemistry due to the inherent challenges of batch photocatalysis on scale. However, translating optimized batch conditions to flow setups is challenging, and a general approach that is rapid, convenient, and inexpensive remains largely elusive. Herein, we report the development of a new approach that uses a microscale high-throughput experimentation (HTE) platform to identify optimal reaction conditions that can be directly translated to flow systems. A key design point is to simulate the flow-vessel pathway within a microscale reaction plate, which enables the rapid identification of optimal flow reaction conditions using only a small number of simultaneous experiments. This approach has been validated against a range of widely used photoredox reactions and, importantly, was found to translate accurately to several commercial flow reactors. We expect that the generality and operational efficiency of this new HTE approach to photocatalysis will allow rapid identification of numerous flow protocols for scale.
Collapse
Affiliation(s)
| | - David F. Fernández
- Merck
Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Juan A. Rincón
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Mario Barberis
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Oscar de Frutos
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Carlos Mateos
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Susana García-Cerrada
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Javier Agejas
- Centro
de Investigación Eli Lilly, S. A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - David W. C. MacMillan
- Merck
Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Thomson CG, Banks C, Allen M, Barker G, Coxon CR, Lee AL, Vilela F. Expanding the Tool Kit of Automated Flow Synthesis: Development of In-line Flash Chromatography Purification. J Org Chem 2021; 86:14079-14094. [PMID: 34270260 DOI: 10.1021/acs.joc.1c01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent advancements in in-line extraction and purification technology have enabled complex multistep synthesis in continuous flow reactor systems. However, for the large scope of chemical reactions that yield mixtures of products or residual starting materials, off-line purification is still required to isolate the desired compound. We present the in-line integration of a commercial automated flash chromatography system with a flow reactor for the continuous synthesis and isolation of product(s). A proof-of-principle study was performed to validate the system and test the durability of the column cartridges, performing an automated sequence of 100 runs over 2 days. Three diverse reaction systems that highlight the advantages of flow synthesis were successfully applied with in-line normal- or reversed-phase flash chromatography, continuously isolating products with 97-99% purity. Productivity of up to 9.9 mmol/h was achieved, isolating gram quantities of pure product from a feed of crude reaction mixture. Herein, we describe the development and optimization of the systems and suggest guidelines for selecting reactions well suited to in-line flash chromatography.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Colin Banks
- Cheshire Sciences (UK) Limited, Kao Hockham Building, Edinburgh Way, Harlow, Essex, England CM20 2NQ, United Kingdom
| | - Mark Allen
- Advion (UK) Limited, Kao Hockham Building, Edinburgh Way, Harlow, Essex, England CM20 2NQ, United Kingdom
| | - Graeme Barker
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom.,Continuum Flow Lab, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Christopher R Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom.,Continuum Flow Lab, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| |
Collapse
|
11
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
12
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
13
|
Alonso M, Garcia MC, McKay C, Thorp LR, Webb M, Edwards LJ. Use of Lithium Diisopropylamide in Flow: Operability and Safety Challenges Encountered on a Multigram Scale. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Alonso
- Medicinal Chemistry, GlaxoSmithKline, Severo Ochoa, 2 P.T.M. Tres Cantos, Madrid 28760, Spain
| | - Maria Cruz Garcia
- Medicinal Chemistry, GlaxoSmithKline, Severo Ochoa, 2 P.T.M. Tres Cantos, Madrid 28760, Spain
| | - Christopher McKay
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Lee R. Thorp
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Michael Webb
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| |
Collapse
|
14
|
|
15
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021; 60:731-735. [PMID: 33026681 PMCID: PMC7821005 DOI: 10.1002/anie.202012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set-up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6-tetramethylpiperidide)⋅TMEDA in n-hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow-procedure was successfully extended to other acrylates by using Barbier-type conditions.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
16
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Lösungsmitteleinflüsse auf die Struktur und Stabilität von Alkalimetallcarbenoiden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katharina Dilchert
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Michelle Schmidt
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Angela Großjohann
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Kai‐Stephan Feichtner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Robert E. Mulvey
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
17
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Solvation Effects on the Structure and Stability of Alkali Metal Carbenoids. Angew Chem Int Ed Engl 2021; 60:493-498. [PMID: 33006796 PMCID: PMC7821203 DOI: 10.1002/anie.202011278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/26/2022]
Abstract
s-Block metal carbenoids are carbene synthons and applied in a myriad of organic transformations. They exhibit a strong structure-activity relationship, but this is only poorly understood due to the challenging high reactivity and sensitivity of these reagents. Here, we report on systematic VT and DOSY NMR studies, XRD analyses as well as DFT calculations on a sulfoximinoyl-substituted model system to explain the pronounced solvent dependency of the carbenoid stability. While the sodium and potassium chloride carbenoids showed high stabilities independent of the solvent, the lithium carbenoid was stable at room temperature in THF but decomposed at -10 °C in toluene. These divergent stabilities could be explained by the different structures formed in solution. In contrast to simple organolithium reagents, the monomeric THF-solvate was found to be more stable than the dimer in toluene, since the latter more readily forms direct Li/Cl interactions which facilitate decomposition via α-elimination.
Collapse
Affiliation(s)
- Katharina Dilchert
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Michelle Schmidt
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Angela Großjohann
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
18
|
Li J, Lu XC, Xu Y, Wen JX, Hou GQ, Liu L. Photoredox Catalysis Enables Decarboxylative Cyclization with Hypervalent Iodine(III) Reagents: Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2020; 22:9621-9626. [DOI: 10.1021/acs.orglett.0c03663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
|
20
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
21
|
Mortzfeld F, Polenk J, Guelat B, Venturoni F, Schenkel B, Filipponi P. Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Frederik Mortzfeld
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Jutta Polenk
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Bertrand Guelat
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Francesco Venturoni
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Berthold Schenkel
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Paolo Filipponi
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Knochel P, Harenberg JH, Weidmann N. Continuous-Flow Reactions Mediated by Main Group Organometallics. Synlett 2020. [DOI: 10.1055/s-0040-1706536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe generation of reactive organometallic reagents in batch is often complicated by the low thermal stability of these important synthetic intermediates and can require low reaction temperatures and special reaction conditions. However, the use of continuous-flow setups and microreactors has led to a revolution in this field. In this short review, an overview is given of recent advances in this area, with a focus on the main group organometallics of Li, Na, and K.
Collapse
|
23
|
Harenberg JH, Weidmann N, Knochel P. Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow. Angew Chem Int Ed Engl 2020; 59:12321-12325. [PMID: 32216119 PMCID: PMC7383875 DOI: 10.1002/anie.202003392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/19/2022]
Abstract
We report the preparation of lithium-salt-free KDA (potassium diisopropylamide; 0.6 m in hexane) complexed with TMEDA (N,N,N',N'-tetramethylethylenediamine) and its use for the flow-metalation of (hetero)arenes between -78 °C and 25 °C with reaction times between 0.2 s and 24 s and a combined flow rate of 10 mL min-1 using a commercial flow setup. The resulting potassium organometallics react instantaneously with various electrophiles, such as ketones, aldehydes, alkyl and allylic halides, disulfides, Weinreb amides, and Me3 SiCl, affording functionalized (hetero)arenes in high yields. This flow procedure is successfully extended to the lateral metalation of methyl-substituted arenes and heteroaromatics, resulting in the formation of various benzylic potassium organometallics. A metalation scale-up was possible without further optimization.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
24
|
Thomson CG, Lee AL, Vilela F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J Org Chem 2020; 16:1495-1549. [PMID: 32647551 PMCID: PMC7323633 DOI: 10.3762/bjoc.16.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergy between photocatalysis and continuous flow chemical reactors has shifted the paradigms of photochemistry, opening new avenues of research with safer and scalable processes that can be readily implemented in academia and industry. Current state-of-the-art photocatalysts are homogeneous transition metal complexes that have favourable photophysical properties, wide electrochemical redox potentials, and photostability. However, these photocatalysts present serious drawbacks, such as toxicity, limited availability, and the overall cost of rare transition metal elements. This reduces their long-term viability, especially at an industrial scale. Heterogeneous photocatalysts (HPCats) are an attractive alternative, as the requirement for the separation and purification is largely removed, but typically at the cost of efficiency. Flow chemical reactors can, to a large extent, mitigate the loss in efficiency through reactor designs that enhance mass transport and irradiation. Herein, we review some important developments of heterogeneous photocatalytic materials and their application in flow reactors for sustainable organic synthesis. Further, the application of continuous flow heterogeneous photocatalysis in environmental remediation is briefly discussed to present some interesting reactor designs that could be implemented to enhance organic synthesis.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| |
Collapse
|
25
|
Harenberg JH, Weidmann N, Knochel P. Herstellung funktioneller Aryl‐, Heteroaryl‐ und benzylischer Organokalium‐Spezies mittels Kaliumdiisopropylamid im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
26
|
|
27
|
Ramanjaneyulu BT, Vidyacharan S, Ahn GN, Kim DP. Ultrafast synthesis of 2-(benzhydrylthio)benzo[ d]oxazole, an antimalarial drug, via an unstable lithium thiolate intermediate in a capillary microreactor. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00038h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present an ultrafast approach for the synthesis of 2-(benzhydrylthio)benzo[d]oxazole, an antimalarial drug, in 75% yield from benzo[d]oxazole-2-thiol and benzhydryl bromide via an unstable lithium thiolate intermediate in the presence of n-BuLi.
Collapse
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Gwang-Noh Ahn
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| |
Collapse
|
28
|
Colella M, Nagaki A, Luisi R. Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry 2019; 26:19-32. [PMID: 31498924 DOI: 10.1002/chem.201903353] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/07/2019] [Indexed: 12/25/2022]
Abstract
In the field of organic synthesis, the advent of flow chemistry and flow microreactor technology represented a tremendous novelty in the way of thinking and performing chemical reactions, opening the doors to poorly explored or even impossible transformations using batch methods. In this Concept article, we would like to highlight the impact of flow chemistry for exploiting highly reactive organometallic reagents, and how, alongside the well-known advantages concerning safety, scalability, and productivity, flow chemistry makes possible processes that are impossible to control by using the traditional batch approach.
Collapse
Affiliation(s)
- Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Aichiiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|