1
|
Treß RS, Liu J, Hättig C, Höfener S. Pushing the limits: Efficient wavefunction methods for excited states in complex systems using frozen-density embedding. J Chem Phys 2022; 157:204101. [DOI: 10.1063/5.0100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Frozen density embedding (FDE) is an embedding method for complex environments that is simple for users to set up. It reduces the computation time by dividing the total system into small subsystems and approximating the interaction by a functional of their densities. Its combination with wavefunction methods is, however, limited to small- or medium-sized molecules because of the steep scaling in computation time of these methods. To mitigate this limitation, we present a combination of the FDE approach with pair natural orbitals (PNOs) in the TURBOMOLE software package. It combines the uncoupled FDE (FDEu) approach for excitation energy calculations with efficient implementations of second-order correlation methods in the ricc2 and pnoccsd programs. The performance of this combination is tested for tetraazaperopyrene (TAPP) molecular crystals. It is shown that the PNO truncation error on environment-induced shifts is significantly smaller than the shifts themselves and, thus, that the local approximations of PNO-based wavefunction methods can without the loss of relevant digits be combined with the FDE method. Computational wall times are presented for two TAPP systems. The scaling of the wall times is compared to conventional supermolecular calculations and demonstrates large computational savings for the combination of FDE- and PNO-based methods. Additionally, the behavior of excitation energies with the system size is investigated. It is found that the excitation energies converge quickly with the size of the embedding environment for the TAPPs investigated in the current study.
Collapse
Affiliation(s)
- Robert S. Treß
- Department of Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jing Liu
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Christof Hättig
- Department of Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Wesp T, Bruckhoff T, Wadepohl H, Gade LH. Peri-Decoration of a Tetraazaperylene with Urea Units: Chiral Octaazaperopyrenedioxides (OAPPDOs) and Their Optical and Chiroptical Properties. Chemistry 2022; 28:e202201706. [PMID: 35758597 PMCID: PMC9796452 DOI: 10.1002/chem.202201706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/01/2023]
Abstract
Octaazaperopyrenedioxides (OAPPDOs) are a new class of fluorescent polycyclic aromatic hydrocarbons based on a tetraazaperylene core that is formally condensed with N-substituted urea units in the two opposite peri positions. Here, we report the synthesis of series of substituted OAPPDO derivatives with different N-substitution patterns (H, alkyl, benzyl) in the peri positions, including bay-chlorinated OAPPDOs. Starting from the latter, a series of bay-arylated OAPPDOs was synthesized by Suzuki cross coupling, which resulted in the formation of helically chiral OAPPDO derivatives. The electrochemical and photophysical properties were investigated by UV/Vis and fluorescence spectroscopy as well as cyclic voltammetry. The P and M enantiomers of a phenylated OAPPDO were separated by semipreparative HPLC and further analyzed by CD spectroscopy. The frontier orbital energies, the mechanism of the isomerization, the electronic excitation and the CD spectrum (TD-DFT) were computed and compared to the experimental data. The reversible 1e- oxidation of the OAPPDOs generates the corresponding radical cations, one of which was characterized by EPR spectroscopy. The reversible oxidation process was also systematically investigated by spectro-electrochemistry.
Collapse
Affiliation(s)
- Tobias Wesp
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Tim Bruckhoff
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
3
|
Wesp T, Bruckhoff T, Petry J, Wadepohl H, Gade LH. Towards Nitrogen‐Rich N‐Heteropolycycles: Synthesis of Octaazaperopyrenes (OAPP). Chemistry 2022; 28:e202200129. [PMID: 35137989 PMCID: PMC9306853 DOI: 10.1002/chem.202200129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/31/2022]
Abstract
Ortho substituted octaazaperopyrenes (OAPPs) are a new class of functional dyes characterized by their strong electron‐accepting behavior. Herein, the synthesis, as well as the electrochemical and photo physical properties of an OAPP dye, is reported. The OAPP target was prepared via selective nucleophilic substitution at the peri position of a bay chlorinated tetraazaperylene by introduction of four amino‐substituents. The resulting tetraminoperylene was reacted with different acyl chlorides and anhydrides to give the twisted bay chlorinated OAPP derivatives which were isolated in their reduced dihydro‐form. The OAPP target could be obtained via a palladium catalyzed dehalogenation and a subsequent oxidation. The eightfold isosteric [CH→N] replacement within the peropyrene core structure results in a large decrease of the frontier orbital energies, rendering the target compound a potent oxidant while preserving the planarity of the aromatic core. The radical anion was obtained by reduction of the OAPP with KC8 and characterized by EPR spectroscopy. A general discussion of the number and location of [CH→N] replacements in peropyrene structures and their frontier orbital energies is provided.
Collapse
Affiliation(s)
- Tobias Wesp
- Anorganisch-Chemisches-Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tim Bruckhoff
- Anorganisch-Chemisches-Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Julian Petry
- Anorganisch-Chemisches-Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches-Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches-Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
4
|
Baal E, Klein M, Harms K, Sundermeyer J. 2,9-Diazadibenzoperylene and 2,9-Dimethyldibenzoperylene-1,3,8,10-tetratriflates: Key to Functionalized 2,9-Diazaperopyrenes. Chemistry 2021; 27:12610-12618. [PMID: 34180559 PMCID: PMC8456801 DOI: 10.1002/chem.202101719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/11/2022]
Abstract
The synthesis of 2,9-diaza-1,3,8,10-tetratriflato-dibenzoperylene (DDP 3 a) and corresponding 2,9-dimethyl-1,3,8,10-tetratriflato-dibenzoperylene (DBP 3 b) has been developed at multigram scale via reduction of one of the industrially most important high-performance dyes, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI), and of the corresponding dihydroxy peropyrenequinone precursor. The focus of this paper is on the reactivity pattern of 3 a as key intermediate towards highly functionalized 2,9-diazadibenzopyrelenes (DDPs) obtained via catalytic substitution of four triflate by aryl, heteroaryl, alkynyl, aminyl, and O-phosphanyl substituents. The influence of electron-donating substituents (OSiMe3 , OPt-Bu2 , N-piperidinyl), electron-withdrawing (OTf, 3,5-bis-trifluoromethyl-phenyl), and of electron-rich π-conjugated (2-thienyl, 4-tert-butylphenyl, trimethylsilyl-ethynyl) substituents on optoelectronic and structural properties of these functionalized DDPs has been investigated via XRD analyses, UV/Vis, PL spectroscopy, and by electroanalytical CV. These results were correlated to results of DFT and TD-DFT calculations. Thus, functionalized DPPs with easily tunable HOMO and LUMO energies and gap became available via a new and reliable synthetic strategy starting from readily available PTCDI.
Collapse
Affiliation(s)
- Eduard Baal
- Chemistry Department and Materials Sciences CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Marius Klein
- Chemistry Department and Materials Sciences CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Klaus Harms
- Chemistry Department and Materials Sciences CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Jörg Sundermeyer
- Chemistry Department and Materials Sciences CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| |
Collapse
|
5
|
Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters. Sci Rep 2021; 11:16097. [PMID: 34373513 PMCID: PMC8352899 DOI: 10.1038/s41598-021-95551-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree–Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.
Collapse
|
6
|
Fink K, Höfener S. Combining wavefunction frozen-density embedding with one-dimensional periodicity. J Chem Phys 2021; 154:104114. [PMID: 33722017 DOI: 10.1063/5.0041501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the combination of wavefunction frozen-density embedding (FDE) with a periodic repetition in one dimension (1D) for molecular systems in the KOALA program. In this periodic orbital-uncoupled FDE ansatz, no wavefunction overlap is taken into account, and only the electron density of the active subsystem is computed explicitly. This density is relaxed in the presence of the environment potential, which is obtained by translating the updated active subsystem density, yielding a fully self-consistent solution at convergence. Treating only one subsystem explicitly, the method allows for the calculation of local properties in condensed molecular systems, while no orbital band structure is obtained preventing the application, e.g., to systems with metallic bonding. In order to illustrate possible applications of the new implementation, selected case studies are presented, ranging from ground-state dipole moments using configuration interaction methods via excitation energies using time-dependent density-functional theory to ionization potentials obtained from equation-of-motion correlation methods. Different levels of approximations are assessed, revealing that an active subsystem consisting of two or three molecules leads to results that are converged with respect to the environment contributions.
Collapse
Affiliation(s)
- Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3630, 76021 Karlsruhe, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049 Karlsruhe, Germany
| |
Collapse
|
7
|
Wollscheid N, Günther B, Rao VJ, Berger FJ, Lustres JLP, Motzkus M, Zaumseil J, Gade LH, Höfener S, Buckup T. Ultrafast Singlet Fission and Intersystem Crossing in Halogenated Tetraazaperopyrenes. J Phys Chem A 2020; 124:7857-7868. [DOI: 10.1021/acs.jpca.0c04852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Benjamin Günther
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Vaishnavi J. Rao
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Felix J. Berger
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - J. Luis Pérez Lustres
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76131 Karlsruhe, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Mandal K, Bansal D, Kumar Y, Rustam, Shukla J, Mukhopadhyay P. Halogen-Bonded Assemblies of Arylene Imides and Diimides: Insight from Electronic, Structural, and Computational Studies. Chemistry 2020; 26:10607-10619. [PMID: 32428280 DOI: 10.1002/chem.202001706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Indexed: 01/06/2023]
Abstract
Halogen-bonding interactions in electron-deficient π scaffolds have largely been underexplored. Herein, the halogen-bonding properties of arylene imide/diimide-based electron-deficient scaffolds were studied. The influence of scaffold size, from small (phthalimide) to moderately sized (pyromellitic diimide or naphthalenediimides) to large (perylenediimide), axial-group modification, and number of halo substituents on the halogen bonding and its self-assembly was probed in a set of nine compounds. The structural modification leads to tunable optical and redox properties. The first reduction potential E 1 / 2 1 ranges between -1.09 and -0.17 V (vs. SCE). Two of the compounds, that is, 6 and 9, have deep-lying LUMOs with values reaching -4.2 eV. Single crystals of all nine systems were obtained, which showed Br⋅⋅⋅O, Br⋅⋅⋅Br, or Br⋅⋅⋅π halogen-bonding interactions, and a few systems are capable of forming all three types. These interactions lead to halogen-bonded rings (up to 12-membered), which propagate to form stacked 1D, 2D, or corrugated sheets. A few outliers were also identified, for example, molecules that prefer C-H⋅⋅⋅O hydrogen bonding over halogen bonding, or noncentrosymmetric rather than centrosymmetric organization. Computational studies based on Atoms in Molecules and Natural Bond Orbital analysis provided further insight into the halogen-bonding interactions. This study can lead to a predictive design tool-box to further explore related systems on surfaces reinforced by these weak directional forces.
Collapse
Affiliation(s)
- Kalyanashis Mandal
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Deepak Bansal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Rustam
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Jyoti Shukla
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| |
Collapse
|
9
|
Günther BAR, Höfener S, Eichelmann R, Zschieschang U, Wadepohl H, Klauk H, Gade LH. Perhalogenated Tetraazaperopyrenes and Their Corresponding Mono- and Dianions. Org Lett 2020; 22:2298-2302. [PMID: 32118454 DOI: 10.1021/acs.orglett.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorination and bromination of 2,9-perfluoropropyl-substituted tetraazaperopyrenes (TAPPs) under forcing conditions resulted in fully core-halogenated TAPP derivatives, devoid of hydrogen atoms at the polycyclic aromatic core. The octahalogenation stabilized the reduced mono- and dianionic compounds sufficiently to allow for their characterization. The additional ortho-chlorination led to an improvement of the electron mobility compared to the bay-substituted tetrachloro-TAPP when employed as an n-channel semiconductor in thin-film transistors.
Collapse
Affiliation(s)
- Benjamin A R Günther
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | | - Robert Eichelmann
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Lutz H Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Günther BAR, Höfener S, Zschieschang U, Wadepohl H, Klauk H, Gade LH. Twisting the TAPPs: Bay-Substituted Non-planar Tetraazapero-pyrenes and their Reduced Anions. Chemistry 2019; 25:14669-14678. [PMID: 31529719 PMCID: PMC7687186 DOI: 10.1002/chem.201903413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Indexed: 01/08/2023]
Abstract
A new synthesis of tetraazaperopyrenes (TAPPs) starting from a halogenated perylene derivative 3,4,9,10- tetrabromo-1,6,7,12-tetrachloroperylene (1) gave access to bay-substituted TAPPs for the first time. Selective lithiation of the bromine-positions and subsequent addition of tosyl azide led to the formation of the tetraazidotetrachloroperylene (2), which was subsequently reduced by addition of sodium borohydride to the corresponding tetraaminotetrachloroperylene (3). Oxidation to its semiquinoidal form 4 and subsequent cyclization with acid chlorides gave rise to a series of bay-chlorinated TAPPs. Whereas the aromatic core of the previously studied ortho-substituted TAPPs was found to be planar, the steric pressure of the two chlorine substituents on each side leads to the twist of the peropyrene core of approximately 30 degrees, a structural feature also observed in other bay-substituted perylene derivatives. An experimental and computational analysis reveals that introducing chloride substituents at these positions leads to slightly increased electron affinities (EA) enabling the selective generation and characterization of the reduced mono-anionic radicals and closed shell di-anionic species. These anions were isolated and characterized by UV/Vis spectroscopy and EPR or NMR, respectively. Processing of the bay-chlorinated TAPPs in n-channel organic TFTs revealed electron mobilities of 0.001 to 0.003 cm2 V-1 s-1 . These reduced electron mobilities compared to the ortho-halogenated TAPPs are thought to be rooted in the less densely packed solid-state structures.
Collapse
Affiliation(s)
- Benjamin A. R. Günther
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sebastian Höfener
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) P.O. Box 698076049KarlsruheGermany
| | - Ute Zschieschang
- Max Planck Institute for Solid State ResearchHeisenbergstr. 170569StuttgartGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hagen Klauk
- Max Planck Institute for Solid State ResearchHeisenbergstr. 170569StuttgartGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches-InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|