1
|
Hou Z, Fan F, Wang Z, Du Y. A stable N-doped NiMoO 4/NiO 2 electrocatalyst for efficient oxygen evolution reaction. Dalton Trans 2024; 53:7430-7435. [PMID: 38591122 DOI: 10.1039/d3dt04034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Recently, there has been a significant interest in the study of highly active and stable transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Non-noble metal nanocatalysts with excellent inherent activity, many exposed active centers, rapid electron transfer, and excellent structural stability are especially promising for the displacement of precious-metal catalysts for the production of sustainable and "clean" hydrogen gas through water-splitting. Herein, efficient electrocatalyst N-doped nickel molybdate nanorods were synthesized on Ni foam by a hydrothermal process and effortless chemical vapor deposition. The heterostructure interface of N-NiMoO4/NiO2 led to strong electronic interactions, which were beneficial for enhancing the OER activity of the catalyst. Excellent OER catalytic activity in 1.0 M KOH was shown, which offered a small overpotential of 185.6 mV to acquire a current density of 10 mA cm-2 (superior to the commercial benchmark material RuO2 under the same condition). This excellent electrocatalyst was stable for 90 h at a constant current density of 10 mA cm-2. We created an extremely reliable and effective OER electrocatalyst without the use of noble metals by doping a nonmetal element with nanostructured heterojunctions of various active components.
Collapse
Affiliation(s)
- Zhengfang Hou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Fangyuan Fan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
2
|
She C, Hong S, Song N, Zhao Z, Li J, Niu Y, Li C, Dong H. In Situ Creation of Surface Defects on Pd@NiPd with Core-shell Hierarchical Structure Toward Boosting Electrocatalytic Activity. Inorg Chem 2024; 63:3199-3206. [PMID: 38286822 DOI: 10.1021/acs.inorgchem.3c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
A deep insight into surface structural evolution of the catalyst is a challenging issue to reveal the structure-activity relationship. In this contribution, based on a surface alloying strategy, the dual-functional Pd@NiPd catalyst with a unique core-shell hierarchical structure is developed through selective crystal growth, surface cocrystallization, directional self-assembly, and reduction process. The surface defects are created in situ on the outer NiPd alloy layer in the electrochemical redox processes, which endow the Pd@NiPd catalyst with excellent electrocatalytic activity of hydrogen generation reaction (HER) and oxygen generation reaction (OER) in alkaline media. The optimal Pd@NiPd-2 catalyst requires an overpotential of only 18 mV that is far lower than Pt/C benchmark (43 mV) at the current density of 10 mA cm-2 for the HER, and 210 mV that is far lower than RuO2 benchmark (430 mV) at 50 mA cm-2 for the OER. Density functional theory (DFT) calculations reveal that the outstanding electrocatalytic activity is originated from the creation of surface defect structure that induces a significant reduction in the adsorption and dissociation energy barriers of H2O molecules in the HER and a decrease in the conversion energy from O* to OOH* that resulted from the synergy of two adjacent Pd sites by forming O-bridge. This work affords a typical paradigm for exploiting efficient catalysts and investigating the dependence of electrocatalytic activity on the surface structural evolution.
Collapse
Affiliation(s)
- Chen She
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shihuan Hong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ning Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihui Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiayao Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaling Niu
- Baicheng Normal University, Baicheng 137000, PR China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Juelsholt M, Aalling-Frederiksen O, Lindahl Christiansen T, Kjær ETS, Lefeld N, Kirsch A, Jensen KMØ. Influence of the Precursor Structure on the Formation of Tungsten Oxide Polymorphs. Inorg Chem 2023; 62:14949-14958. [PMID: 37658472 PMCID: PMC10520979 DOI: 10.1021/acs.inorgchem.3c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Indexed: 09/03/2023]
Abstract
Understanding material nucleation processes is crucial for the development of synthesis pathways for tailormade materials. However, we currently have little knowledge of the influence of the precursor solution structure on the formation pathway of materials. We here use in situ total scattering to show how the precursor solution structure influences which crystal structure is formed during the hydrothermal synthesis of tungsten oxides. We investigate the synthesis of tungsten oxide from the two polyoxometalate salts, ammonium metatungstate, and ammonium paratungstate. In both cases, a hexagonal ammonium tungsten bronze (NH4)0.25WO3 is formed as the final product. If the precursor solution contains metatungstate clusters, this phase forms directly in the hydrothermal synthesis. However, if the paratungstate B cluster is present at the time of crystallization, a metastable intermediate phase in the form of a pyrochlore-type tungsten oxide, WO3·0.5H2O, initially forms. The pyrochlore structure then undergoes a phase transformation into the tungsten bronze phase. Our studies thus experimentally show that the precursor cluster structure present at the moment of crystallization directly influences the formed crystalline phase and suggests that the precursor structure just prior to crystallization can be used as a tool for targeting specific crystalline phases of interest.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | | | | | - Emil T. S. Kjær
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Niels Lefeld
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Strasse/NW2, D-28359 Bremen, Germany
| | - Andrea Kirsch
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| |
Collapse
|
4
|
Jia F, Zou X, Wei X, Bao W, Ai T, Li W, Guo Y. Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093411. [PMID: 37176293 PMCID: PMC10179828 DOI: 10.3390/ma16093411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Heterostructure construction and heteroatom doping are powerful strategies for enhancing the electrolytic efficiency of electrocatalysts for overall water splitting. Herein, we present a P-doped MoS2/Ni3S2 electrocatalyst on nickel foam (NF) prepared using a one-step hydrothermal method. The optimized P[0.9mM]-MoS2/Ni3S2@NF exhibits a cluster nanoflower-like morphology, which promotes the synergistic electrocatalytic effect of the heterostructures with abundant active centers, resulting in high catalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte. The electrode exhibits low overpotentials and Tafel slopes for the HER and OER. In addition, the catalyst electrode used in a two-electrode system for overall water splitting requires an ultralow voltage of 1.42 V at 10 mA·cm-2 and shows no obvious increase in current within 35 h, indicating excellent stability. Therefore, the combination of P doping and the heterostructure suggests a novel path to formulate high-performance electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Feihong Jia
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiangyu Zou
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xueling Wei
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Weiwei Bao
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Taotao Ai
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Wenhu Li
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yuchen Guo
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
5
|
Xie H, Feng Y, He X, Zhu Y, Li Z, Liu H, Zeng S, Qian Q, Zhang G. Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207425. [PMID: 36703521 DOI: 10.1002/smll.202207425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2 ) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9 S8 /Ni3 S2 hybrid nanosheet arrays on nickel foam (N-Co9 S8 /Ni3 S2 /NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm-2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm-2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9 S8 /Ni3 S2 /NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm-2 , which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt-nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.
Collapse
Affiliation(s)
- Hui Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoyue He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ziyun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Deng X, Chen J, Zhang C, Yan Y, Wu B, Zhang J, Wang G, Wang R, Chen J. Pt modified NiMoO 4-GO/NF nanorods withstrong metal-support interaction as efficient bifunctional catalysts for overall water splitting. J Colloid Interface Sci 2023; 640:928-939. [PMID: 36907153 DOI: 10.1016/j.jcis.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Catalysts for the electrolysis of water are critical in the production of hydrogen for the energy industry. The use of strong metal-support interactions (SMSI) to modulate the dispersion, electron distribution, and geometry of active metals is an effective strategy for improving catalytic performance. However, in currently used catalysts, the supporting effect does not significantly contribute directly to catalytic activity. Consequently, the continued investigation of SMSI, using active metals to stimulate the supporting effect for catalytic activity, remains very challenging. Herein, the atomic layer deposition technique was employed to prepare an efficient catalyst composed of platinum nanoparticles (Pt NPs) deposited on nickel-molybdate (NiMoO4) nanorods. Nickel-molybdate's oxygen vacancies (Vo) not only help anchor highly-dispersed Pt NPs with low loading but also strengthen the SMSI. The valuable electronic structure modulation between Pt NPs and Vo resulted in a low overpotential of the hydrogen and oxygen evolution reactions, returning results of 190 mV and 296 mV, respectively, at a current density of 100 mA cm-2 in 1 M KOH. Ultimately, an ultralow potential (1.515 V) for the overall decomposition of water was achieved at 10 mA cm-2, outperforming state-of-art catalysts based on the Pt/C || IrO2 couple (1.668 V). This work aims to provide reference and a concept for the design of bifunctional catalysts that apply the SMSI effect to achieve a simultaneous catalytic effect from the metal and its support.
Collapse
Affiliation(s)
- Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jingyi Chen
- Soochow Institute for Energy and Materials Innovations (SIEMSI), Soochow University, Suzhou 215021, Jiangsu Province, PR China
| | - Chenyang Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Yong Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Bingzheng Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Cheng Z, Gao M, Sun L, Zheng D, Xu H, Kong L, Gao C, Yu H, Lin J. FeSe/FeSe
2
Heterostructure as a Low‐Cost and High‐Performance Electrocatalyst for Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoyang Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Mengyou Gao
- College of Automation and Electronic Engineering Qingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Lei Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Dehua Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Huizhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Chang Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University (Nanjing Tech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| |
Collapse
|
9
|
Ye F, Zhang L, Lu C, Bao Z, Wu Z, Liu Q, Shao Z, Hu L. Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2 nm Co 0.85 Se-NiSe Nanograins for Efficient Overall Water Splittings. SMALL METHODS 2022; 6:e2200459. [PMID: 35587615 DOI: 10.1002/smtd.202200459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical overall water splitting using renewable energy input is highly desirable for large-scale green hydrogen generation, but it is still challenged due to the lack of low-cost, durable, and highly efficient electrocatalysts. Herein, 1D nanowires composed of numerous 2 nm Co0.85 Se-NiSe nanograin heterojunctions as efficient precious metal-free bifunctional electrocatalyst are reported for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution with the merits of high activity, durability, and low cost. The abundant microinterface among the ultrafine nanograins and the presence of lattice distortion around nanograin interface is found to create a superhydrophilic surface of the electrocatalyst, which significantly facilitate the fast diffusion of electrolytes and the release of the formed H2 and O2 from the catalyst surface. Furthermore, synergic effect between Co0.85 Se and NiSe grain on adjusting the electronic structure is revealed, which enhances electron mobility for fast electron transport during the HER/OER process. Owing to these merits, the rationally designed Co0.85 Se-NiSe heterostructures display efficient overall water splitting behavior with a low voltage of 1.54 V at 10 mA cm-2 and remarkable long-term durability for the investigated period of 50 h.
Collapse
Affiliation(s)
- Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lin Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhuoheng Bao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zeyi Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qiang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (NanjingTech), Nanjing, 210009, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Li J, Cui H, Du X, Zhang X. The controlled synthesis of nitrogen and iron co-doped Ni 3S 2@NiP 2 heterostructures for the oxygen evolution reaction and urea oxidation reaction. Dalton Trans 2022; 51:2444-2451. [PMID: 35048936 DOI: 10.1039/d1dt03933d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At present, global resources are nearly exhausted and environmental pollution is becoming more and more serious, so it is urgent to develop efficient catalysts for hydrogen production. Herein, nitrogen and iron co-doped Ni3S2 and NiP2 heterostructures with high efficiency oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performances were firstly successfully prepared on nickel foam by hydrothermal and high-temperature calcination methods. Benefiting from the hierarchical structure, the exposure of more active sites and the doping effect of N and Fe, the N-Fe-Ni3S2@NiP2/NF material showed excellent electrocatalytic activity for the OER and UOR. The N-Fe-Ni3S2@NiP2/NF material displays excellent catalytic OER performance; the overpotential is only 251 mV to drive 100 mA cm-2 current density, while for the UOR, the potential is only 1.353 V to drive 100 mA cm-2 current density, which is one of the best catalytic activities reported so far. It is worth noting that scanning electron microscopy showed that the surface of N-Fe-Ni3S2@NiP2/NF is rough and has some mesopores, which may have resulted in an increase of active sites during the electrocatalytic process. The N-Fe-Ni3S2@NiP2/NF electrode couple also has relatively long-term durability in alkaline solutions, maintaining a stable current density for 15 h at 1.35 V. The density functional theory (DFT) calculation shows that the in situ generated Fe doped nanooxides exhibit strong water adsorption energy, which may be one of the reasons for the good catalytic activity. Our work is conducive to the rational design of electrocatalysts for efficient hydrogen production from water splitting and wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongyi Cui
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
11
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Xie D, Yu D, Hao Y, Han S, Li G, Wu X, Hu F, Li L, Chen HY, Liao YF, Peng S. Dual-Active Sites Engineering of N-Doped Hollow Carbon Nanocubes Confining Bimetal Alloys as Bifunctional Oxygen Electrocatalysts for Flexible Metal-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007239. [PMID: 33590684 DOI: 10.1002/smll.202007239] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Since the sluggish kinetic process of oxygen reduction (ORR)/evolution (OER) reactions, the design of highly-efficient, robust, and cost-effective catalysts for flexible metal-air batteries is desired but challenging. Herein, bimetallic nanoparticles encapsulated in the N-doped hollow carbon nanocubes (e.g., FeCo-NPs/NC, FeNi-NPs/NC, and CoNi-NPs/NC) are rationally designed via a general heat-treatment strategy of introducing NH3 pyrolysis of dopamine-coated metal-organic frameworks. Impressively, the resultant FeCo-NPs/NC hybrid exhibits superior bifunctional electrocatalytic performance for ORR/OER, manifesting exceptional discharging performance, outstanding lifespan, and prime flexibility for both Zn/Al-air batteries, superior to those of state-of-the-art Pt/C and RuO2 catalysts. X-ray absorption near edge structure and density functional theory indicate that the strong synergy between FeCo alloy and N-doped carbon frameworks has a distinctive activation effect on bimetallic Fe/Co atoms to synchronously modify the electronic structure and afford abundant dual-active Fe/Co-Nx sites, large surface area, high nitrogen doping level, and conductive carbon frameworks to boost the reversible oxygen electrocatalysis. Such N-doped carbon with bimetallic alloy bonds provides new pathways for the rational creation of high-efficiency energy conversion and storage equipment.
Collapse
Affiliation(s)
- Dengyu Xie
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Deshuang Yu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yanan Hao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Silin Han
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Guanghua Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaoli Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Feng Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu, 30013, Taiwan
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
13
|
Boppella R, Tan J, Yun J, Manorama SV, Moon J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213552] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Xu Y, Chai X, Liu M, Ren T, Yu S, Wang Z, Li X, Wang L, Wang H. Two-Dimensional NiIr@N-Doped Carbon Nanocomposites Supported on Ni Foam for Electrocatalytic Overall Water Splitting. Chemistry 2020; 26:14496-14501. [PMID: 32841440 DOI: 10.1002/chem.202003473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Indexed: 11/11/2022]
Abstract
Electrochemical water splitting can provide a promising avenue for sustainable hydrogen production. Highly efficient electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are extremely important for the practical application of water splitting technology. Herein, a one-step annealing strategy is reported for the fabrication of a metal-organic framework-derived bifunctional self-supported electrocatalyst, which is composed of two-dimensional N-doped carbon-wrapped Ir-doped Ni nanoparticle composites supported on Ni foam (NiIr@N-C/NF). The resultant NiIr@N-C/NF displays excellent electrocatalytic performance in 1.0 m KOH, with low overpotentials of 32 mV at 10 mA cm-2 for the HER and 329 mV at 50 mA cm-2 for the OER. Particularly, the HER-OER bifunctional NiIr@N-C/NF needs only 1.50 V to yield 10 mA cm-2 for overall water splitting.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Xingjie Chai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Mengying Liu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Shanshan Yu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| |
Collapse
|
15
|
Xu Y, Yu S, Ren T, Liu S, Wang Z, Li X, Wang L, Wang H. Hydrophilic/Aerophobic Hydrogen-Evolving Electrode: NiRu-Based Metal-Organic Framework Nanosheets In Situ Grown on Conductive Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34728-34735. [PMID: 32643917 DOI: 10.1021/acsami.0c03333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrocatalytic reduction of water via hydrogen evolution reaction (HER) is considered one of the most ideal avenues to produce high-purity hydrogen (H2) in large quantities, which always requires active electrocatalysts to overcome the high energy barrier. It is of significance yet challenging to design and construct effective HER electrocatalysts of an acceptable cost. In this study, a highly efficient metal-organic framework (MOF)-based electrochemical HER system based on NiRu-based binary MOF (Ru-doped Ni2(BDC)2TED MOF, BDC = 1,4-benzenedicarboxylic acid; TED = triethylenediamine) nanosheets grown on conductive substrates (e.g., Ni foam, carbon cloth) is fabricated by a facile solvothermal method. The resultant NiRu-MOF-based composites possess enhanced electron transport ability and water stability, accompanied by increased electrochemically active areas and hydrophilic/aerophobic properties. With these advantages, the optimized NiRu-MOF nanosheet arrays on Ni foam substrate (NiRu-MOF/NF) with a Ru/Ni molar ratio of 6/94 in the MOF structure could exhibit efficient catalytic performance for HER in alkaline conditions, requiring a small overpotential of 51 mV at -10 mA cm-2. This study could provide a feasible way for the design and synthesis of two-dimensional (2D) MOF-based materials with controllable interface properties for energy catalysis and beyond.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shanshan Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|