1
|
Liu J, Chen Y, Tang H, Chen H, Qiu R, Yuan H. Theoretical Investigations on the Molecular Magnetic Behavior of Actinide Molecules [AnPc 2] 0/- (An = U, Cf): Prediction of the High Magnetic Blocking Barrier and Magnetic Blocking Temperature in [CfPc 2] . J Phys Chem A 2025; 129:717-732. [PMID: 39780501 DOI: 10.1021/acs.jpca.4c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5f orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher Ueff. In combination of the density functional theory (DFT) as well as the CF model Hamiltonian and ab initio calculation, we have investigated the structural stability and electronic structures as well as the magnetodynamic behavior of [AnPc2]0/- (An = U, Cf) molecules. We find that An atoms can strongly interact with its ligand N atoms in forming An-N ionic bonds, and 5f electrons are more localized in the Cf atom than in the U atom, giving U4+(5f2) and Cf3+(5f9) valence states. Although the UPc2 molecule has a modest value of Ueff = 514 cm-1, it is not a good SMM due to the easy occurrence of quantum tunneling of magnetization (QTM). Based on the consistent results of CF Hamiltonian and ab initio calculations on the [CfPc2]- molecule, we propose that almost prohibited QTM within the Kramers doublets (KDs) as well as very low transition probabilities between different states via hindered spin-flip transitions would result in a high Ueff = 1401 cm-1. The estimated high magnetic blocking temperature (TB) of 58 K renders [CfPc2]- an excellent SMM candidate, implying that magnetic hysteresis could be observed in future experiments.
Collapse
Affiliation(s)
- Jie Liu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaqing Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Huan Tang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | | | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, China
- College of Artificial Intelligence, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, Chongqing 400715, China
| |
Collapse
|
2
|
Wu J, Li J, Yang Q, Liu D, Tang J, Zhang B. Fine-Tuning the Anisotropies of Air-Stable Single-Molecule Magnets Based on Macrocycle Ligands. Inorg Chem 2025; 64:999-1006. [PMID: 39780613 DOI: 10.1021/acs.inorgchem.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Air-stable single-molecule magnets (SMMs) can be obtained by confining DyIII ion in a D6h coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for Dy-NH), -O- (for Dy-O), and -NMe- (for Dy-NMe). Complex Dy-NH shows a less distorted D6h symmetry and an anisotropy energy barrier of 1270 K. For complex Dy-O, the coordination site of -O- gives a relatively longer coordination bond but a comparable energy barrier in contrast with that of Dy-NH. In the case of complex Dy-NMe, although the -NMe-group gives a very long coordination bond, the large steric effect on the -NMe- group enforces a larger distortion of the D6h coordination geometry, resulting in the fast quantum tunneling of the magnetization that shortcuts the thermal relaxation process; therefore, Dy-NMe shows a lower energy barrier. This study provides a new strategy for modifying the coordinate site on the equatorial plane of D6h symmetry to fine-tune the structure and magnetic anisotropy of SMMs.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jingsong Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qianqian Yang
- Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, P. R. China
| | - Dan Liu
- School of Science, Changchun Institute of Technology, Changchun 130012, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
3
|
Mariano L, Nguyen VHA, Briganti V, Lunghi A. Charting Regions of Cobalt's Chemical Space with Maximally Large Magnetic Anisotropy: A Computational High-Throughput Study. J Am Chem Soc 2024; 146:34158-34166. [PMID: 39604084 PMCID: PMC11638940 DOI: 10.1021/jacs.4c14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Magnetic anisotropy slows down magnetic relaxation and plays a prominent role in the design of permanent magnets. Coordination compounds of Co(II) in particular exhibit large magnetic anisotropy in the presence of low-coordination environments and have been used as single-molecule magnet prototypes. However, only a limited sampling of cobalt's vast chemical space has been performed, potentially obscuring alternative chemical routes toward large magnetic anisotropy. Here we perform a computational high-throughput exploration of Co(II)'s chemical space in search of new single-molecule magnets. We automatically assemble a diverse set of ∼15,000 novel complexes of Co(II) and fully characterize them with multireference ab initio methods. More than 100 compounds exhibit magnetic anisotropy comparable to or larger than leading known compounds. The analysis of these results shows that compounds with record-breaking magnetic anisotropy can also be achieved with coordination four or higher, going beyond the established paradigm of two-coordinated linear complexes.
Collapse
Affiliation(s)
- Lorenzo
A. Mariano
- School of Physics, AMBER
and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Vu Ha Anh Nguyen
- School of Physics, AMBER
and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Valerio Briganti
- School of Physics, AMBER
and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Alessandro Lunghi
- School of Physics, AMBER
and CRANN Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
4
|
Zhong X, Li DY, Cao C, Luo TK, Hu ZB, Peng Y, Liu SJ, Zheng YZ, Wen HR. Effect of Substituents in Equatorial Hexaazamacrocyclic Schiff Base Ligands on the Construction and Magnetism of Pseudo D6h Single-Ion Magnets. Inorg Chem 2024; 63:21909-21918. [PMID: 39482923 DOI: 10.1021/acs.inorgchem.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Three mononuclear DyIII compounds [DyL1(Ph3SiO)2][BPh4]·MeCN·2H2O (1), [DyL2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2), and [DyL3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3) and their corresponding YIII diluted analogues [Dy0.0967Y0.9033L1(Ph3SiO)2][BPh4]·MeCN·2H2O (1@Y), [Dy0.2668Y0.7332L2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2@Y), and [Dy0.1260Y0.8740L3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3@Y) were synthesized with hexaazamacrocyclic Schiff base ligands as an equatorial ligand. The substituents in the equatorial hexaazamacrocyclic Schiff base ligand show a significant effect on the replacement of the axial ligands. Compounds 1, 2, and 3 are typical zero dc field single-molecule magnets with effective energy barriers (Ueff) of 1092(6), 946.1(7), and 150.1(9) K, respectively. Although the effective energy barriers of 1 and 2 are close, the magnetic hysteresis remains open up to 20 K for 1, twice as large as that of 2 (10 K), which is different from the previously reported compounds, probably due to nonplanarity N6 in the equator. Ab initio calculations indicate that the ground states of compounds 1 and 2 exhibit high anisotropy and pure second and third excited states, while compound 3 exhibits pure ground-state anisotropy and highly mixed excited states, leading to the easy occurrence of quantum tunneling of magnetization between the ground and excited states in compound 3. This work indicates that the substituents in equatorial hexaazamacrocyclic Schiff base ligands have a significant effect on the construction and magnetic properties of DyIII SIMs with D6h symmetry.
Collapse
Affiliation(s)
- Xiang Zhong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Dong-Yang Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Tong-Kai Luo
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Zhao-Bo Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| |
Collapse
|
5
|
Peng XH, Shang T, Zheng J, Liu M, Zheng Q, Guo FS. Enhancing the magnetic properties of Dy(III) single-molecule magnets in octahedral coordination symmetry by tuning the equatorial ligands. Dalton Trans 2024; 53:16709-16715. [PMID: 39344482 DOI: 10.1039/d4dt02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Conventionally, octahedral (Oh) coordination symmetry of lanthanide centers is not ideal for constructing high-performance single-molecule magnets (SMMs). However, introducing a strong ligand field in the axial direction to increase crystal field splitting can potentially overcome this limitation. Herein, we successfully obtained two dysprosium(III) single-molecule magnets, [Dy(OCtBu3)X2(py)3] (X = Cl (1), I (2), py = pyridine), in Oh coordination symmetry. The two complexes differ only in the coordinating anions on the equatorial plane, yet their magnetic performances are distinctly different. When chloride is replaced by a weaker donor iodide, the energy barrier is dramatically improved from 29 cm-1 (1) to 860 cm-1 (2), highlighting the importance of weakening the transverse ligand field and maximizing the axial ligand field for high-performance SMMs.
Collapse
Affiliation(s)
- Xiao-Han Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Tao Shang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Jieyu Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Qi Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Fu-Sheng Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| |
Collapse
|
6
|
Zhou X, Qin H, Zeng Z, Luo S, Yang T, Cen P, Liu X. Modulation of the magnetic properties of mononuclear Dy(III) complexes by tuning the coordination geometry and local symmetry. Dalton Trans 2024; 53:16219-16228. [PMID: 39298127 DOI: 10.1039/d4dt02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Precise control of the crystal field and local symmetry around the paramagnetic spin center is crucial for the design and synthesis of single-molecule magnets (SMMs). Herein, three mononuclear Dy(III)-based complexes, [Dy(LN6)(CH3COO)2](BPh4)(CH2Cl2) (1), [Dy(LN6)(2,6-Cl-4-NO2-PhO)(H2O)2]2(PF6)2(H2O)(2,6-Cl-4-NO2-PhO)2 (2) and [Dy(LN6)(2,6-Cl-4-NO2-PhO)2](BPh4)(CH2Cl2)2 (3) (LN6 = N6-hexagonal plane accomplished by a neutral Schiff base ligand formed from 2,6-diacetylpyridine and ethylenediamine), are successfully isolated. In these complexes, the Dy(III) centers are coordinated with six neutral N atoms from a nonrigid equatorial ligand, while different oxygen-bearing ligands are arranged at the axial positions of the central ions by gradual regularization of the axial ligands. As a result, Dy(III) ions in the three complexes exhibit various coordination geometries, forming a ten-coordinate tetradecahedron for 1, a nine-coordinate muffin configuration for 2 and a distorted eight-coordinate hexagonal bipyramid for 3. Magnetic studies reveal that all complexes exhibit no SIM behaviour under zero dc field, due to the predominant quantum tunneling of magnetization (QTM), which can be effectively suppressed by additional dc fields. Experiments, coupled with theoretical calculations, demonstrate that varying local symmetries and coordination geometries are synergistically responsible for the disparities of QTM and uniaxial anisotropy, resulting in notably different magnetic properties.
Collapse
Affiliation(s)
- Xuejuan Zhou
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Huiliang Qin
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhaopeng Zeng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tao Yang
- Ningxia People's Hospital, Yinchuan 753009, China
| | - Peipei Cen
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
7
|
Gawryszewska P, Ślepokura K, Lisowski J. Triple-Decker Hexaazamacrocyclic Lanthanide(III) Complexes: Structure, Magnetic Properties, and Temperature-Dependent Luminescence. Inorg Chem 2024; 63:15875-15887. [PMID: 39120757 DOI: 10.1021/acs.inorgchem.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The reaction of fluoride anions with mononuclear rare-earth(III) complexes of the hexaazamacrocycle derived from 2,6-diformylpyridine and ethylenediamine affords trinuclear coordination compounds [Ln3L3(μ2-F)4(NO3)2](NO3)3. The X-ray crystal structures of these complexes show triplex cationic complexes where the three roughly parallel macrocyclic lanthanide(III) units are linked by bis-μ2-F bridges. The detailed analysis of the photophysical properties of the [Eu3L3(μ2-F)4(NO3)2](NO3)3·2H2O and [Tb3L3(μ2-F)4(NO3)2](NO3)3·3H2O complexes reveals different temperature dependence of luminescence intensity and luminescence decay time of the Eu(III) and Tb(III) derivatives. The spectra of mixed species of average composition [Eu1.5Tb1.5L3(μ2-F)4(NO3)2](NO3)3·3H2O are in accordance with the ratiometric luminescent thermometer behavior. Measurements of the direct-current (dc) magnetic susceptibility of the [Dy3L3(μ2-F)4(NO3)2](NO3)3·2H2O complex indicate possible ferromagnetic interactions between the Dy(III) ions. Alternating current (ac) susceptibility measurements of this complex indicate single-molecule magnet behavior in zero dc field with magnetic relaxation dominated by Orbach mechanism and an effective energy barrier Ueff = 12.3 cm-1 (17.7 K) with a pre-exponential relaxation time, τ0 of 7.3 × 10-6 s. A similar reaction of mononuclear macrocyclic complexes with a higher number of fluoride equivalents results in polymeric {[Ln3L3(μ2-F)5](NO3)4}n complexes. The X-ray crystal structure of the Nd(III) derivative of this type shows trinuclear units that are additionally linked by single fluoride bridges to form a linear coordination polymer.
Collapse
Affiliation(s)
- Paula Gawryszewska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Katarzyna Ślepokura
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Jerzy Lisowski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| |
Collapse
|
8
|
Wang JL, Chen JT, Yan H, Wang TT, Zhang YQ, Sun WB. Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy. Dalton Trans 2024; 53:10982-10990. [PMID: 38874222 DOI: 10.1039/d4dt00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Ji-Tun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| |
Collapse
|
9
|
Kalita P, Kumari K, Kumar P, Kumar V, Singh SK, Rogez G, Chandrasekhar V. Eight-coordinate mono- and dinuclear Dy(III) complexes containing a rigid equatorial plane and an anisobidentate carboxylate ligand in the axial position: synthesis, structure and magnetism. Dalton Trans 2024; 53:10521-10535. [PMID: 38842042 DOI: 10.1039/d4dt00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A rigid pentadentate chelating ligand (H2L) has been utilized to synthesize a series of octacoordinate mononuclear complexes, [Dy(L)(Ph3PO)(OOCR)] (where R = C6H5 (1), C(CH3)3 (2), CF3 (3)) and a dinuclear complex, [Dy2(L)2(Ph3PO)2{(OOC)2C6H4}] (4) based on the highly anisotropic Dy(III) ion. All the complexes were structurally characterized by single-crystal X-ray diffraction studies. The complexes were formed by the coordination action of the dianionic pentadentate ligand [L]2-, one phosphine oxide, and carboxylate ligands. DC and AC magnetic measurements were performed on 1-4. Complexes 1-4 show SMM behaviour, under zero DC field for 1 and 4, and under 500 Oe and 1000 Oe DC fields for 2 and 3 respectively, with thermally activated, Raman, and Raman and quantum tunnelling dominant relaxation mechanisms for 1 and 2, 3 and 4, respectively.
Collapse
Affiliation(s)
- Pankaj Kalita
- Department of Chemistry, Nowgong Girls' College, Nagaon, Assam-782 002, India.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502 285, India.
| | - Pawan Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 107, India.
| | - Vierandra Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 107, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502 285, India.
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS/Université de Strasbourg, UMR 7504, 67000 Strasbourg, France.
| | | |
Collapse
|
10
|
Xu W, Luo Q, Li Z, Zhai Y, Zheng Y. Bis-Alkoxide Dysprosium(III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308548. [PMID: 38400593 PMCID: PMC11077650 DOI: 10.1002/advs.202308548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Indexed: 02/25/2024]
Abstract
High-performance and air-stable single-molecule magnets (SMMs) can offer great convenience for the fabrication of information storage devices. However, the controversial requisition of high stability and magnetic axiality is hard to balance for lanthanide-based SMMs. Here, a family of dysprosium(III) crown ether complexes possessing hexagonal-bipyramidal (pseudo-D6h symmetry) local coordination geometry with tunable air stability and effective energy barrier for magnetization reversal (Ueff) are shown. The three complexes share the common formula of [Dy(18-C-6)L2][I3] (18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; L = I, 1; L = OtBu 2 and L = 1-AdO 3). 1 is highly unstable in the air. 2 can survive in the air for a few minutes, while 3 remains unchanged in the air for more than 1 week. This is roughly in accordance with the percentage of buried volumes of the axial ligands. More strikingly, 2 and 3 show progressive enhancement of Ueff and 3 exhibits a record high Ueff of 2427(19) K, which significantly contributes to the 100 s blocking temperature up to 11 K for Yttrium-diluted sample, setting a new benchmark for solid-state air-stable SMMs.
Collapse
Affiliation(s)
- Wen‐Jie Xu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Qian‐Cheng Luo
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Zi‐Han Li
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yuan‐Qi Zhai
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yan‐Zhen Zheng
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| |
Collapse
|
11
|
De S, Mondal A, Giblin SR, Layfield RA. Bimetallic Synergy Enables Silole Insertion into THF and the Synthesis of Erbium Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202317678. [PMID: 38300223 DOI: 10.1002/anie.202317678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The potassium silole K2 [SiC4 -2,5-(SiMe3 )2 -3,4-Ph2 ] reacts with [M(η8 -COT)(THF)4 ][BPh4 ] (M=Er, Y; COT=cyclo-octatetraenyl) in THF to give products that feature unprecedented insertion of the nucleophilic silicon centre into a carbon-oxygen bond of THF. The structure of the major product, [(μ-η8 : η8 -COT)M(μ-L1 )K]∞ (1M ), consists of polymeric chains of sandwich complexes, where the spiro-bicyclic silapyran ligand [C4 H8 OSiC4 (SiMe3 )2 Ph2 ]2- (L1 ) coordinates to potassium via the oxygen. The minor product [(μ-η8 : η8 -COT)M(μ-L1 )K(THF)]2 (2M ) features coordination of the silapyran to the rare-earth metal. In forming 1M and 2M , silole insertion into THF only occurs in the presence of potassium and the rare-earth metal, highlighting the importance of bimetallic synergy. The lower nucleophilicity of germanium(II) leads to contrasting reactivity of the potassium germole K2 [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ] towards [M(η8 -COT)(THF)4 ][BPh4 ], with intact transfer of the germole occurring to give the coordination polymers [{η5 -GeC4 (SiMe3 )2 Me2 }M(η8 -COT)K]∞ (3M ). Despite the differences in reactivity induced by the group 14 heteroatom, the single-molecule magnet properties of 1Er , 2Er and 3Er are similar, with thermally activated relaxation occurring via the first-excited Kramers doublet, subject to effective energy barriers of 122, 80 and 91 cm-1 , respectively. Compound 1Er is also analysed by high-frequency dynamic magnetic susceptibility measurements up to 106 Hz.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, CF24 3AA, Cardiff, UK
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| |
Collapse
|
12
|
Gil Y, de Santana RC, Vega A, Aravena D, Spodine E. Influence of symmetry on the magneto-optical properties of a bifunctional macrocyclic Dy III complex. Dalton Trans 2023. [PMID: 38014706 DOI: 10.1039/d3dt03042c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In this work, a novel complex, [Dy(LPr)(NO3)2]·(H2O)·(NO3) (1), containing a highly distorted macrocyclic ligand (LPr) and weak axial anions (NO3-), was synthesized and characterized. Even though this coordination environment is not ideal for maximizing the magnetic anisotropy of a DyIII ion, a magneto-structural analysis reveals that the high distortion of the macrocycle promotes a disposition of the hard plane and easy axis opposite to the expected one. This results in a quite symmetrical environment which allows obtaining a field induced SMM behaviour. The magnetic relaxation properties of this complex were rationalized with the aid of ab initio multireference calculations. Moreover, 1 showed the characteristic emission bands of DyIII ion, indicating that the macrocyclic ligand acts as an efficient sensitizer in the energy transfer process to the emissive state of the DyIII ion. Due to the symmetric environment of 1, the Y/B intensity ratio (0.61) results in CIE coordinates (0.278; 0.314), close to those of the white light region. To gain further insight into the mechanism leading to the luminescence properties, ab initio calculations were performed to elucidate the key factors controlling the Y/B intensity ratio in this bifunctional complex.
Collapse
Affiliation(s)
- Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380544, Santiago, Chile.
| | - Ricardo Costa de Santana
- Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia (GO), Brazil
| | - Andrés Vega
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| | - Evgenia Spodine
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380544, Santiago, Chile.
| |
Collapse
|
13
|
Zhao C, Wang T, Liu X, Zhu Z, Ying X, Li XL, Tang J. Peroxido-bridged chiral double-decker dysprosium macrocycles. Dalton Trans 2023; 52:15456-15461. [PMID: 37466249 DOI: 10.1039/d3dt01540h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lanthanide peroxides show high reactivity in oxidative coupling of methane (OCM). However, the number of isolated and structurally characterized molecular species remains relatively small. To the best of our knowledge, homochiral molecule-based lanthanide peroxides have not been reported. Herein, two pairs of side-on peroxido-bridged dinuclear hexaazamacrocyclic dysprosium enantiomers with formulas [Dy2(LES/R)2L2O2](BPh4)2·CH3OH·CH3CN (where LE is derived from the condensation reaction between (1S,2S)/(1R,2R)-1,2-diphenylethylenediamine and 2,6-diformylpyridine; HL = 2,6-diphenylphenol) (1/2) and [Dy2(LES/R)2Cl2O2](BPh4)2·2CH3CN (3/4) are specially designed and created with the help of hydrogen peroxide. The out-of-phase alternating-current magnetic susceptibility of 1/2 gives rise to frequency-dependent peaks between 6 and 32 K under a zero applied direct current (dc) field, while no peak at any temperature and frequency was observed for 3/4 implying the presence of a weak axial crystal field (CF).
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tingting Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
14
|
Armenis AS, Alexandropoulos DI, Worrell A, Cunha-Silva L, Dunbar KR, Stamatatos TC. Peripheral site modification in a family of dinuclear [Dy 2(hynad) 2-6(NO 3) 0-6(sol) 0-2] 0/2- single-molecule magnets bearing a {Dy 2(μ-OR) 2} 4+ diamond-shaped core and exhibiting dissimilar magnetic dynamics. Dalton Trans 2023; 52:13565-13577. [PMID: 37724338 DOI: 10.1039/d3dt02596a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The first use of the organic chelate N-hydroxy-1,8-naphthalimide (hynadH) in DyIII chemistry has unveiled access to a synthetic 'playground' composed of four new dinuclear complexes, all of which possess the same planar {Dy2(μ-OR)2}4+ diamond-shaped core, resulting from the bridging and chelating capacity of the hynad- groups. The structural stability of the central {Dy2} core has allowed for the modulation of the peripheral coordination sites of the metal ions, and specifically the NO3-/hynad- ratio of capping groups, thus affording the compounds [Dy2(hynad)2(NO3)4(DMF)2] (1), (Me4N)2[Dy2(hynad)2(NO3)6] (2), [Dy2(hynad)4(NO3)2(H2O)2] (3), and [Dy2(hynad)6(H2O)2] (4). Because of the chemical and structural modifications in the series 1-4, the DyIII coordination polyhedra are also dissimilar, comprising the muffin (1 and 3), tetradecahedral (2), and spherical tricapped trigonal prismatic (4) geometries. Complexes 1, 2, and 4 exhibit a ferromagnetic response at low temperatures, while 3 is antiferromagnetically coupled. All compounds exhibit out-of-phase (χ''M) ac signals as a function of ac frequency and temperature, thus behaving as single-molecule magnets (SMMs), in the absence or presence of applied dc fields. Interestingly, the hynad--rich and nitrato-free complex 4, demonstrates the largest energy barrier (Ueff = 69.62(1) K) for the magnetization reversal which is attributed to the presence of the two axial triangular faces of the spherical tricapped trigonal prism by the negatively charged O-atoms of the hynad- ligands.
Collapse
Affiliation(s)
| | | | - Anne Worrell
- Department of Chemistry, 1812 Sir Isaac Brock Way, Brock University, L2S 3A1 St Catharines, Ontario, Canada.
| | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Theocharis C Stamatatos
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE - HT), Platani, P.O. Box 1414, 26504, Patras, Greece
| |
Collapse
|
15
|
Marcinkowski D, Kubicki M, Patroniak V, Muzioł T, Chorazy S, Shi L, Zychowicz M, Majcher-Fitas AM, Podgajny R, Gorczyński A. Trityl-Based Lanthanide-Supramolecular Assemblies Exhibiting Slow Magnetic Relaxation. Chemistry 2023; 29:e202300695. [PMID: 37408381 DOI: 10.1002/chem.202300695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
The triphenylmethane (trityl) group has been recognized as a supramolecular synthon in crystal engineering, molecular machine rotors and stereochemical chirality inductors in materials science. Herein we demonstrate for the first time how it can be utilized in the domain of molecular magnetic materials through shaping of single molecule magnet (SMM) properties within the lanthanide complexes in tandem with other non-covalent interactions. Trityl-appended mono- (HL1 ) and bis-compartmental (HL2 ) hydrazone ligands were synthesized and complexated with Dy(III) and Er(III) triflate and nitrate salts to generate four monometallic (1-4) and two bimetallic (5, 6) complexes. The static and dynamic magnetic properties of 1-6 were investigated, revealing that only ligand HL1 induces assemblies (1-4) capable of showing SMM behaviour, with Dy(III) congeners (1, 2) able to exhibit the phenomenon also under zero field conditions. Theoretical ab initio studies helped in determination of Dy(III) energetic levels, magnetic anisotropic axes and corroborated magnetic relaxation mechanisms to be a combination of Raman and quantum tunnelling in zero dc field, the latter being cancelled in the optimum non-zero dc field. Our work represents the first study of magneto-structural correlations within the trityl Ln-SMMs, leading to generation of slowly relaxing zero-field dysprosium complexes within the hydrogen-bonded assemblies.
Collapse
Affiliation(s)
- Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Tadeusz Muzioł
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Jurija Gagarina 11, 87-100, Toruń, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Le Shi
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Mikołaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Anna M Majcher-Fitas
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
16
|
Dong XT, Yu MQ, Peng YB, Zhou GX, Peng G, Ren XM. Single molecule magnet features in luminescent lanthanide coordination polymers with heptacoordinate Dy/Yb(III) ions as nodes. Dalton Trans 2023; 52:12686-12694. [PMID: 37609766 DOI: 10.1039/d3dt02106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Two sets of 1D/2D lanthanide coordination polymers with formulas of Ln(oqa)3·2H2O [Hoqa = 2-(4-oxoquinolin-1(4H)-yl) acetic acid, Ln = Dy (1), Yb (2)] and Ln(oaa)2(HCOO)(H2O) [Hoaa = 2-(9-oxoacridin-10(9H)-yl) acetic acid, Ln = Dy (3), Yb (4)] have been synthesized and their physical properties were investigated. All four complexes are constructed from seven-coordinate lanthanide ions and corresponding organic linkers. The lanthanide ions in 1 and 2 adopt a pentagonal bipyramid coordination geometry, whereas the coordination geometry of lanthanide ions in 3 and 4 can be described as a capped octahedron. Slow magnetic relaxation behaviors were observed in these four products at a zero/non-zero static magnetic field. Complexes 1, 2 and 4 exhibit the characteristic emission of Ln(III) ions, whereas complex 3 shows ligand-based emission. Bright yellow light emission was also observed when a voltage was applied, demonstrating the potential of 1 for application in light-emitting diodes (LEDs). Compounds 3 and 4 are the first examples of lanthanide complexes based on Hoaa ligands.
Collapse
Affiliation(s)
- Xiang-Tao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Meng-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yong-Bo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Xing Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
17
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
18
|
Borah A, Dey S, Gupta SK, Rajaraman G, Murugavel R. Field-induced SIM behaviour in early lanthanide(III) organophosphates containing 18-crown-6. Dalton Trans 2023. [PMID: 37317701 DOI: 10.1039/d3dt01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-ion magnets (SIMs) have attracted wide attention in recent years. Despite tremendous progress in late lanthanide SIMs, reports on early lanthanides exhibiting SIM characteristics are scarce. A series of five novel 18-crown-6 encapsulated mononuclear early lanthanide(III) organophosphates, [{(18-crown-6)Ln(dippH)3}{(18-crown-6)Ln(dippH)2(dippH2)}]·[I3] [Ln = Ce (1), Pr (2), Nd (3)] and [{Ln(18-crown-6)(dippH)2(H2O)}·{I3}] [Ln = Sm (4) and Eu (5)], have been synthesised in the present study. 18-crown-6 coordinates to Ln(III) ions in an equatorial position while the axial positions are occupied by either three phosphate moieties as in 1-3 or two phosphate moieties and one water molecule as in 4 and 5, resulting in a muffin-shaped coordination geometry around the Ln(III) centres. Magnetic susceptibility measurements reveal that Ce and Nd complexes are field-induced single-ion magnets with significant barrier heights. Furthermore, the ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations on complexes 1 and 3 reveal significant QTM in the ground state rationalising the field-induced single-ion magnetism behaviour of these complexes.
Collapse
Affiliation(s)
- Aditya Borah
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Sandeep K Gupta
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| |
Collapse
|
19
|
Yang K, Sun R, Zhao J, Deng C, Wang B, Gao S, Huang W. A Combined Synthetic, Magnetic, and Theoretical Study on Enhancing Ligand-Field Axiality for Dy(III) Single-Molecule Magnets Supported by Ferrocene Diamide Ligands. Inorg Chem 2023. [PMID: 37311100 DOI: 10.1021/acs.inorgchem.3c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular design is crucial for improving the performance of single-molecule magnets (SMMs). For dysprosium(III) SMMs, enhancing ligand-field axiality is a well-suited strategy to achieve high-performance SMMs. We synthesized a series of dysprosium(III) complexes, (NNTIPS)DyBr(THF)2 (1, NNTIPS = fc(NSiiPr3)2; fc = 1,1'-ferrocenediyl, THF = tetrahydrofuran), [(NNTIPS)Dy(THF)3][BPh4] (2), (NNTIPS)DyI(THF)2 (3), and [(NNTBS)Dy(THF)3][BPh4] (4, NNTBS = fc(NSitBuMe2)2), supported by ferrocene diamide ligands. X-ray crystallography shows that the rigid ferrocene backbone enforces a nearly axial ligand field with weakly coordinating equatorial ligands. Dysprosium(III) complexes 1-4 all exhibit slow magnetic relaxation under zero fields and possess high effective barriers (Ueff) around 1000 K, comparable to previously reported (NNTBS)DyI(THF)2 (5). We probed the influences of structural variations on SMM behaviors by theoretical calculations and found that the distribution of negative charges defined by rq, i.e., the ratio of the charges on the axial ligands to the charges on the equatorial ligands, plays a decisive role. Moreover, theoretical calculations on a series of model complexes 1'-5' without equatorial ligands unveil that the axial crystal-field parameters B20 are directly proportional to the N-Dy-N angles and support the hypothesis that enhancing the ligand-field axiality could improve SMM performance.
Collapse
Affiliation(s)
- Kexin Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jingliang Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
20
|
Dunstan MA, Giansiracusa MJ, Vonci M, Calvello S, Yu D, Soncini A, Boskovic C, Mole RA. Direct observation of magnetoelastic coupling in a molecular spin qubit: new insights from crystal field neutron scattering data. Chem Sci 2023; 14:3990-4001. [PMID: 37063800 PMCID: PMC10094165 DOI: 10.1039/d2sc05797b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Single-molecule magnets are promising candidates for data storage and quantum computing applications. A major barrier to their use is rapid magnetic relaxation and quantum decoherence due to thermal vibrations. Here we report a reanalysis of inelastic neutron scattering (INS) data of the candidate qubit Na9[Ho(W5O18)2]·35D2O, wherein we demonstrate for the first time that magnetic relaxation times and mechanisms can be directly observed as crystal field (CF) peak broadening in INS spectra of a lanthanoid molecular system. The magnetoelastic coupling between the lower energy CF states and phonons (lattice vibrations) is determined by the simultaneous measurement of CF excitations and the phonon density of states, encoded within the same INS experiment. This directly results in the determination of relaxation coupling pathways that occur in this molecule. Such information is invaluable for the further advancement of SMMs and to date has only been obtained from techniques performed in external magnetic fields. Additionally, we determine a relaxation rate of quantum-tunnelling of magnetisation that is consistent with previously measured EPR spectroscopy data.
Collapse
Affiliation(s)
- Maja A Dunstan
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | | | - Michele Vonci
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | - Simone Calvello
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| | - Alessandro Soncini
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Colette Boskovic
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| |
Collapse
|
21
|
Kalita P, Ahmed N, Moorthy S, Béreau V, Bar AK, Kumar P, Nayak P, Sutter JP, Singh SK, Chandrasekhar V. Slow magnetic relaxation in a homoaxially phosphine oxide coordinated pentagonal bipyramidal Dy(III) complex. Dalton Trans 2023; 52:2804-2815. [PMID: 36752179 DOI: 10.1039/d2dt03789k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the synthesis of [(L)DyIII(Cy3PO)2]·[BPh4] (1-Dy) (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone and Cy = cyclohexyl) which crystallized in the triclinic, P1̄ space group. The local geometry around Dy(III) in 1-Dy was found to be pentagonal bipyramidal (pseudo-D5h). The AC magnetic susceptibility measurements performed on 1-Dy and on its diluted 1-Y(Dy) samples showed a typical single-molecule magnet signature revealed by the appearance of AC-frequency dependent out-of-phase susceptibility signals in the absence of a static magnetic field. The out-of-phase AC susceptibility signals were well resolved on the application of a small magnetic field (HDC = 500 Oe) and yielded an energy barrier for magnetization flipping of Ueff/kB = 50 K for the diluted derivative. The magnetic studies on 1-Dy and 1-Y(Dy) and data analysis further confirm that Raman and QTM under-barrier magnetic relaxations play a crucial role in lowering Ueff despite the almost axial nature of the Dy(III) ion in 1-Dy. We have rationalized these observations through detailed ab initio calculations performed on the X-ray crystal structure of 1-Dy.
Collapse
Affiliation(s)
- Pankaj Kalita
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| | - Naushad Ahmed
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Arun Kumar Bar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 501507, India
| | - Pawan Kumar
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India. .,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
22
|
Mironov VS, Bazhenova TA, Manakin YV, Yagubskii EB. Pentagonal-bipyramidal 4d and 5d complexes with unquenched orbital angular momentum as a unique platform for advanced single-molecule magnets: current state and perspectives. Dalton Trans 2023; 52:509-539. [PMID: 36537237 DOI: 10.1039/d2dt02954e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article overviews the current state and prospects of the concept of advanced single-molecule magnets (SMMs) based on low-spin (S = 1/2) pentagonal-bipyramidal (PBP) 4d3 and 5d3 complexes with unquenched orbital angular momentum. This approach is based on the unique property of PBP 4d3 and 5d3 complexes to cause highly anisotropic spin coupling of perfect uniaxial symmetry, -JzSziSzj - Jxy(SxiSxj + SyiSyj), regardless of the local geometric symmetry. The M(4d/5d)-M(3d) exchange-coupled pairs in the apical positions of the PBP complexes produce Ising-type exchange interactions (|Jz| > |Jxy|), which serve as a powerful source of uniaxial magnetic anisotropy of a SMM cluster. In polynuclear heterometallic 4d/5d-3d complexes embodying PBP 4d/5d units and high-spin 3d ions, anisotropic Ising-type exchange interactions produce a double-well potential with high energy barriers Ueff, which is controlled by the anisotropic exchange parameters Jz, Jxy. Theoretical analysis shows that the barrier is proportional to the difference |Jz - Jxy| and to the number n of the apical 4d/5d-3d pairs in a SMM cluster, Ueff ∝ |Jz - Jxy|n, which provides an opportunity to scale up the barrier Ueff and blocking temperature TB up to the record values. A novel family of 4d/5d complexes with forced PBP coordination provided by structurally rigid planar pentadentate Schiff-base ligands in the equatorial plane is discussed as a better alternative to the cyanometallates. The possibility of a significant increase in the anisotropic exchange parameters Jz, Jxy in PBP complexes with monoatomic apical μ-bridging ligands is examined. The basic principles of molecular engineering the highest barrier through anisotropic exchange interactions of PBP 4d/5d complexes are formulated. The theoretical and experimental results taken together indicate that the concept of high-performance SMMs based on 4d/5d PBP complexes with unquenched orbital angular momentum is an attractive alternative to the currently dominant lanthanide-based SMM strategy.
Collapse
Affiliation(s)
- V S Mironov
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia. .,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" RAS, Moscow, Russia
| | - T A Bazhenova
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| | - Yu V Manakin
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| | - E B Yagubskii
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| |
Collapse
|
23
|
Synthesis, Luminescence and magnetic properties of dinuclear complexes based on a “pincer” Schiff base and different β-diketonate ligands. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Zhang B, Guo X, Tan P, Lv W, Bai X, Zhou Y, Yuan A, Chen L, Liu D, Cui HH, Wang R, Chen XT. Axial Ligand as a Critical Factor for High-Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Inorg Chem 2022; 61:19726-19734. [PMID: 36417790 DOI: 10.1021/acs.inorgchem.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The choice of axial ligands is of great importance for the construction of high-performance Dy-based single-molecule magnets (SMMs). Here, combining axial ligands Ph3SiO- (anion of triphenylsilanol) and 2,6-dichloro-4-nitro-PhO- (the anion of 2,6-dichloro-4-nitrophenol) with a neutral macrocyclic ligand 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene (L2N5) generates two new pentagonal bipyramidal Dy(III) complexes [DyIII(L2N5) (X)2](BPh4) (X = Ph3SiO-, 1; 2,6-dichloro-4-nitro-PhO-, 2) with strong axial ligand fields. Magnetic characterizations show that 1 possesses a large energy barrier above 1000 K and a magnetic hysteresis up to 9 K, whereas 2 only displays field-induced peaks of alternating-current susceptibilities without the hysteresis loop, even though 2 has a similar coordination geometry with 1. Detailed Ab initio calculations indicate an apparent difference in the axial negative charge between both complexes, which is caused by the diverse electron-donating properties of the axial ligands. The present work provides an efficient strategy to enhance the SMMs' properties, which highlights that the electron-donating property of the axial ligands is especially important for constructing the high-performance Dy-based SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoye Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yang Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Ruosong Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
25
|
Georgiev M, Chamati H. Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting. ACS OMEGA 2022; 7:42664-42673. [PMID: 36467950 PMCID: PMC9713882 DOI: 10.1021/acsomega.2c06119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence.
Collapse
Affiliation(s)
- Miroslav Georgiev
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| | - Hassan Chamati
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| |
Collapse
|
26
|
Zhang B, Cheng Z, Wu Y, Chen L, Jing R, Cai X, Jiang C, Zhang YQ, Yuan A, Cui HH, Li ZY. Pseudo-mono-axial ligand fields that support high energy barriers in triangular dodecahedral Dy(iii) single-ion magnets. Chem Sci 2022; 13:13231-13240. [PMID: 36425507 PMCID: PMC9667924 DOI: 10.1039/d2sc03182e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 11/20/2024] Open
Abstract
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O- and n = 1 for 2; L = PhO- and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl-), methoxy (CH3O-) or phenoxy (PhO-) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (U eff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy-O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy-L ligand field for constructing promising SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University Jiangsu 226019 PR China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| |
Collapse
|
27
|
Long J, Selikhov AN, Cherkasov AV, Nelyubina YV, Salles F, Guari Y, Larionova J, Trifonov AA. Base‐Free Alkoxide Dysprosium(III) Complexes with an Unusual Tetraphenylborate Coordination: Study of the Slow Relaxation of the Magnetization. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Long
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
- Institut Universitaire de France (IUF) 1 rue Descartes 75231 Paris Cedex 05 France
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Yulia V. Nelyubina
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | | | - Yannick Guari
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| |
Collapse
|
28
|
Sheng Y, Jiang YJ, Cheng ZH, Liu RC, Ge JY, Gao F. Syntheses, structures, and magnetic properties of acetate-bridged lanthanide complexes based on a tripodal oxygen ligand. Front Chem 2022; 10:1021358. [PMID: 36199666 PMCID: PMC9527289 DOI: 10.3389/fchem.2022.1021358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Four homodinuclear lanthanide complexes, Dy2 (LOEt)2(OAc)4 (1), Tb2 (LOEt)2(OAc)4 (2), Ho2(LOEt)2(OAc)4 (3), and Gd2 (LOEt)2(OAc)4 (4), have been synthesized and characterized based on a tripodal oxygen ligand Na [(η5-C5H5)Co(P(O)(OC2H5)2)3] (NaLOEt). Structural analyses show that the acetate anions bridge two symmetry-related Ln3+ ions in the μ2:η1:η1 and μ2:η1:η2 coordination patterns, and each lanthanide (III) ion owns a twisted square antiprism (SAPR) conformation. Static magnetic measurements reveal the weak intramolecular ferromagnetic interaction between dysprosium (III) ions in 1 and antiferromagnetic Ln3+···Ln3+ couplings in the other three complexes. Through the analysis of the ligand-field effect and magnetic anisotropy axis orientation, the reasons for the lack of dynamic magnetic behavior in 1 were identified.
Collapse
Affiliation(s)
- Yu Sheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Yu-Jing Jiang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Zi-Hang Cheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Ru-Chan Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
- *Correspondence: Feng Gao, ; Jing-Yuan Ge,
| | - Feng Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Feng Gao, ; Jing-Yuan Ge,
| |
Collapse
|
29
|
Zeng M, Zhou ZY, Wu XR, Liu CM, Kou HZ. Assembly of a Heterotrimetallic Zn 2Dy 2Ir Pentanuclear Complex toward Multifunctional Molecular Materials. Inorg Chem 2022; 61:14275-14281. [PMID: 36031796 DOI: 10.1021/acs.inorgchem.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rational selection of metal ions and organic ligands to synthesize metal-organic complexes (MOCs) is necessary for constructing multifunctional materials. Herein, we have obtained a novel heterotrimetallic Zn2Dy2Ir pentanuclear MOC by the assembly of DyIII, luminescent ZnII(valpn), and [IrIII(H2L)(ppy)2]Cl metalloligands (Hppy = 2-phenylpyridine, H2L = 2,2'-bipyridine-5,5'-di-p-benzoic acid). Single-crystal structural analysis shows that the central [IrIII(L)(ppy)2]- bridges two ZnDy moieties using two carboxylates of L2-. Measurements of organic light-emitting diodes (OLEDs) show that the maximum luminance is 284.2 cd/m2 and the turn-on voltage is 6 V. Magnetic studies reveal that Zn2Dy2Ir is a field-induced single-molecule magnet (SMM) with an energy barrier of 19.1(2) K under a 2 kOe dc field. Zn2Dy2Ir shows luminescence sensing with a quenching efficiency of up to 99.0% for 2,4,6-trinitrophenol (TNP).
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Ze-Yang Zhou
- Beijing National Laboratory for Molecular Sciences, Centre for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xue-Ru Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
30
|
Gil Y, Castro-Alvarez A, Fuentealba P, Spodine E, Aravena D. Lanthanide SMMs Based on Belt Macrocycles: Recent Advances and General Trends. Chemistry 2022; 28:e202200336. [PMID: 35648577 DOI: 10.1002/chem.202200336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/06/2022]
Abstract
Enhancement of axial magnetic anisotropy is the central objective to push forward the performance of Single-Molecule Magnet (SMM) complexes. In the case of mononuclear lanthanide complexes, the chemical environment around the paramagnetic ion must be tuned to place strongly interacting ligands along either the axial positions or the equatorial plane, depending on the oblate or prolate preference of the selected lanthanide. One classical strategy to achieve a precise chemical environment for a metal centre is using highly structured, chelating ligands. A natural approach for axial-equatorial control is the employment of macrocycles acting in a belt conformation, providing the equatorial coordination environment, and leaving room for axial ligands. In this review, we present a survey of SMMs based on the macrocycle belt motif. Literature systems are divided in three families (crown ether, Schiff-base and metallacrown) and their general properties in terms of structural stability and SMM performance are briefly discussed.
Collapse
Affiliation(s)
- Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile.,Centro para la Nanociencia y Nanotecnología (CEDENNA), Santiago, Estación Central, Región Metropolitana, Chile
| | - Alejandro Castro-Alvarez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Pablo Fuentealba
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Evgenia Spodine
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile.,Centro para la Nanociencia y Nanotecnología (CEDENNA), Santiago, Estación Central, Región Metropolitana, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| |
Collapse
|
31
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno-Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single-Molecule Magnets. Angew Chem Int Ed Engl 2022; 61:e202203285. [PMID: 35426226 DOI: 10.1002/anie.202203285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 02/05/2023]
Abstract
A family of fully sandwiched arachno-lanthanacarborane complexes formulated as {η6 -[μ-1,2-[o-C6 H4 (CH2 )2 ]-1,2-C2 B10 H10 ]2 Ln}{Li5 (THF)10 } (Ln=Tb, Dy, Ho, Er, Y) is successfully synthesized, where the "carbons-adjacent" carboranyl ligand (arachno-R2 -C2 B10 H10 4- ) bears four negative charges and coordinates to the central lanthanide ions using the hexagonal η6 C2 B4 face. Thus, the central lanthanide cations are pseudo-twelve-coordinate and have an approximate pseudo-D6h symmetry or hexagonal-prismatic geometry. As the crystal field effect imparted by this geometry is still unknown, we thoroughly investigated the magnetic properties of this series of complexes and found that the crystal field imposed by this ligand causes a relation of Tb>Dy>Ho>Er for the energy gaps between the ground and the first excited states, which is of striking resemblance to the ferrocenophane and phthalocyanine ligands although the latter two ligands give disparate local coordination geometries. Moreover, the effective energy barrier to magnetization reversal of 445(10) K, the observable hysteresis loop up to 4 K and the relaxation time of the yttrium-diluted sample reaching 193(17) seconds at 2 K under an optimized field for the Tb analogue of this family of arachno-lanthanacarborane complexes, render a new benchmark for Tb3+ -based single-molecule magnets.
Collapse
Affiliation(s)
- Peng-Bo Jin
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke-Xin Yu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ye-Ye Liu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
32
|
Lisowski J. Imine- and Amine-Type Macrocycles Derived from Chiral Diamines and Aromatic Dialdehydes. Molecules 2022; 27:molecules27134097. [PMID: 35807342 PMCID: PMC9267964 DOI: 10.3390/molecules27134097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
The condensation of aromatic dialdehydes with chiral diamines, such as 1,2-trans-diaminocyclohexane, leads to various enantiopure or meso-type macrocyclic Schiff bases, including [2 + 2], [3 + 3], [4 + 4], [6 + 6] and [8 + 8] condensation products. Unlike most cases of macrocycle synthesis, the [3 + 3] macrocycles of this type are sometimes obtained in high yields by direct condensation without a metal template. Macrocycles of other sizes from this family can often be selectively obtained in high yields by a suitable choice of metal template, solvent, or chirality of the building blocks. In particular, the application of a cadmium(II) template results in the expansion of the [2 + 2] macrocycles into giant [6 + 6] and [8 + 8] macrocycles. These imine macrocycles can be reduced to the corresponding macrocyclic amines which can act as hosts for the binding of multiple cations or multiple anions.
Collapse
Affiliation(s)
- Jerzy Lisowski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
33
|
Chen H, Sun L, Zheng K, Zhang J, Ma P, Wang J, Niu J. Oxalate-bridging Nd III-based arsenotungstate with multifunctional NIR-luminescence and magnetic properties. Dalton Trans 2022; 51:10257-10265. [PMID: 35748588 DOI: 10.1039/d2dt01066f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxalate bridged Nd-based arsenotungstate, K14Na6H4[{(As2W19O67(H2O))Nd(H2O)2}2(C2O4)]·64H2O (1), was obtained from the reaction of K14[As2W19O67(H2O)], oxalic acid, and NdCl3·6H2O in mildly acidic aqueous solution. The polyanion exhibits a dimeric structure in which the fully deprotonated oxalate ligands bridge two NdIII cations and the arsenotungstate anions act as blocking ligands. The photoluminescence (PL) spectrum of 1 shows the characteristic emission peak of NdIII in the near-infrared (NIR) region. However, the O → W charge-transfer transitions of arsenotungstate cannot effectively sensitize the emission of NdIII cations as confirmed by the emission spectrum, due to the mismatch of the energy gap between 3T1u → 1A1g (21.57 × 103 cm-1) of arsenotungstate components and 4F3/2 → 4I9/2 (11.43 × 103 cm-1) of NdIII cations. Magnetic studies of 1 demonstrate its field-induced single-molecule magnet (SMM) behavior. Direct current magnetic susceptibility studies imply the weak ferromagnetic couplings present between the two neighboring NdIII cations. In addition, the synergy between the coordination configuration of NdIII cations and the intramolecular magnetic interaction was discussed.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jinpeng Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
34
|
Corredoira-Vázquez J, González-Barreira C, Fondo M, García-Deibe AM, Sanmartín-Matalobos J, Gómez-Coca S, Ruiz E, Colacio E. Dinuclear Fluoride Single-Bridged Lanthanoid Complexes as Molecule Magnets: Unprecedented Coupling Constant in a Fluoride-Bridged Gadolinium Compound. Inorg Chem 2022; 61:9946-9959. [PMID: 35737854 PMCID: PMC9275779 DOI: 10.1021/acs.inorgchem.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new synthetic method
allows isolating fluoride-bridged complexes
Bu4N{[M(3NO2,5Br-H3L1,1,4)]2(μ-F)} (M = Dy, 1; M = Ho, 2; M = Gd, 3) and Bu4N{[Dy(3Br,5Cl-H3L1,2,4)]2(μ-F)}·2H2O, 4·2H2O. The crystal structures of 1·5CH3C6H5,·2·2H2O·0.75THF, 3, and 4·2H2O·2THF show that all of them are
dinuclear compounds with linear single fluoride bridges and octacoordinated
metal centers. Magnetic susceptibility measurements in the temperature
range of 2–300 K reveal that the GdIII ions in 3 are weakly antiferromagnetically coupled, and this constitutes
the first crystallographically and magnetically analyzed gadolinium
complex with a fluoride bridge. Variable-temperature magnetization
demonstrates a poor magnetocaloric effect for 3. Alternating
current magnetic measurements for 1, 2,
and 4·2H2O bring to light that 4·2H2O is an SMM, 1 shows an
SMM-like behavior under a magnetic field of 600 Oe, while 2 does not show relaxation of the magnetization even under an applied
magnetic field. In spite of this, 2 is the first fluoride-bridged
holmium complex magnetically analyzed. DFT and ab initio calculations support the experimental magnetic results and show
that apparently small structural differences between 1 and 4·2H2O introduce important changes
in the dipolar interactions, from antiferromagnetic in 1 to ferromagnetic in 4·2H2O. Dinuclear linear fluoride single-bridged
DyIII, HoIII, and GdIII complexes
are systematically
obtained from mononuclear aquo-complexes, with the DyIII ones showing slow relaxation of the magnetization and the GdIII one revealing a weak AF coupling through the Gd−F−Gd
bridge.
Collapse
Affiliation(s)
- Julio Corredoira-Vázquez
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Cristina González-Barreira
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Matilde Fondo
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Ana M García-Deibe
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Jesús Sanmartín-Matalobos
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
35
|
Liu M, Yang Y, Jing R, Zheng S, Yuan A, Wang Z, Luo SC, Liu X, Cui HH, Ouyang ZW, Chen L. Slow magnetic relaxation in dinuclear Co(III)-Co(II) complexes containing a five-coordinated Co(II) centre with easy-axis anisotropy. Dalton Trans 2022; 51:8382-8389. [PMID: 35587605 DOI: 10.1039/d2dt00857b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two air-stable Co(III)-Co(II) mixed-valence complexes of molecular formulas [CoIICoIII(L)(DMAP)3(CH3COO)]·H2O·CH3OH (1) and [CoIICoIII(L)(4-Pyrrol)3 (CH3COO)]·0.5CH2Cl2 (2) (H4L = 1,3-bis-(5-methyl pyrazole-3-carboxamide) propane; DMAP = 4-dimethylaminopyridine; and 4-Pyrrol = 4-pyrrolidinopyridine) were synthesized and characterized by single-crystal X-ray crystallography, high-field electron paramagnetic resonance (HFEPR) spectroscopy, and magnetic measurements. Both complexes possess one five-coordinated paramagnetic Co(II) ion and one six-coordinated Co(III) ion with octahedral geometry. Direct-current magnetic susceptibility and magnetization measurements show the easy-axis magnetic anisotropy that is also confirmed by low-temperature HFEPR measurements and theoretical calculations. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal their field-assisted slow magnetic relaxation, which is a characteristic behavior of single-molecule magnets (SMMs), caused by the individual Co(II) ion. The effective energy barrier of complex 1 (49.2 cm-1) is significantly higher than those of the other dinuclear Co(III)-Co(II) SMMs. This work hence presents the first instance of the dinuclear Co(III)-Co(II) single-molecule magnets with a five-coordinated environment around the Co(II) ion.
Collapse
Affiliation(s)
- Mengyao Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shu-Chang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, P. R. China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| |
Collapse
|
36
|
Hu B, Xi J, Cen P, Guo Y, Ding Y, Qin Y, Zhang YQ, Liu X. A mononuclear nine-coordinated Dy(iii) complex exhibiting field-induced single-ion magnetism behaviour. RSC Adv 2022; 12:13992-13998. [PMID: 35558827 PMCID: PMC9089352 DOI: 10.1039/d2ra02260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
A new mononuclear Dy(iii) complex, with the formula [Dy(Hcpt)3]·2H2O (1), has been successfully prepared via self-assembly between Dy(iii) ions and 2-cyano-N′-(1-(pyridin-2-yl)amido)acetyl (Hcpt) ligand. X-ray diffraction study shows that the Dy(iii) ion is nine-coordinated by three Hcpt ligands with a tridentate chelating mode, leading to an approximately monocapped square-antiprismatic (C4v) geometry. Magnetic data analysis demonstrates that 1 performs field-induced slow magnetic relaxation with a relaxation barrier of 97.90 K, due to the quantum tunneling effect suppressed upon a static dc field of 2000 Oe. To deeply understand the magnetic behaviors, the relaxation mechanisms and magneto-structure relationship are rationally discussed using ab initio calculations as well. Reaction of Dy(iii) ion with tridentate acylhydrazone ligand leads to a field-induced Dy(iii) SIM, of which the magneto-structural correlation is elucidated by the magnetic and theoretical studies.![]()
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yuanyuan Qin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
37
|
Luo QC, Ge N, Zhai YQ, Wang T, Sun L, Sun Q, Li F, Fu Z, Zheng YZ. Switching the coordination geometry to enhance erbium(III) single-molecule magnets. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno‐Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single‐Molecule Magnets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng-Bo Jin
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ke-Xin Yu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Qian-Cheng Luo
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ye-Ye Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yuan-Qi Zhai
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology Center for Applied Chemical Research 99 Yan Xiang LuQujiang Campus of Xi'an Jiaotong UniversityA316 Xi Yi Lou 710054 Xian CHINA
| |
Collapse
|
39
|
Cai X, Cheng Z, Wu Y, Jing R, Tian SQ, Chen L, Li ZY, Zhang YQ, Cui HH, Yuan A. Tuning the Equatorial Negative Charge in Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets to Improve the Magnetic Behavior. Inorg Chem 2022; 61:3664-3673. [PMID: 35171611 DOI: 10.1021/acs.inorgchem.1c03775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of the pentaethylene glycol (EO5) and deprotonation of EO5, a family of new structurally hexagonal bipyramidal Dy(III) complexes, [Dy(EO5)(2,6-dichloro-4-nitro-PhO)2](2,6-dichloro-4-nitro-PhO) (1), [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)2] (2), and [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)Cl] (3), were controbllably synthesized and structurally characterized. Magnetic measurements show that complex 1 is a zero-field SIM and has an observable hysteresis opening up to 4 K. Conversely, only under extra magnetic field is slow magnetic relaxation observed in 2 and 3. This considerable difference in the magnetic behavior is mainly caused by the change of the equatorial negative charge. Detailed ab initio calculations further elucidate that the quantum tunneling is induced by the presence of equatorial negative charge, and the magnetic anisotropy depends on the axial ligands. This work demonstrates that the absence of the equatorial negative charge should also be considered in the rational design of promising single molecular magnets based on the oblate ions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Shuang-Qin Tian
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| |
Collapse
|
40
|
Borah A, Murugavel R. Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(III), Nd(III), Gd(III), Ho(III), Tm(II/III) and Yb(III). Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Mondal A, Konar S. Effect of an axial coordination environment on quantum tunnelling of magnetization for dysprosium single-ion magnets with theoretical insight. Dalton Trans 2022; 51:1464-1473. [PMID: 34988577 DOI: 10.1039/d1dt03678e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report two mononuclear dysprosium complexes [Dy(H4L){B(OMe)2(Ph)2}2](Cl)·MeOH (1) and [Dy(H4L){MeOH)2(NCS)2}](Cl) (2) [where H4L = 2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(N-phenylhydrazinecarboxamide)] with different axial coordination environments. The structural analysis revealed that the pentadentate H4L ligand binds through the equatorial position in both complexes. In complex 1, the axial positions are occupied by bidentate dimethoxydiphenyleborate [B(OMe)2(Ph)2]-. On the other hand, in complex 2, one axial position is occupied by two NCS- and one MeOH molecule while another MeOH molecule is coordinated to the other axial position. Magnetic measurements disclose the presence of field-induced slow relaxation of magnetization with an energy barrier of Ueff = 30 K for 1 whereas no such effective barrier was observed in complex 2. Detailed analysis of field and temperature dependence of the relaxation time confirms the major role of Raman, QTM, and direct processes rather than the Orbach process in complex 1. It was observed that [B(OMe)2(Ph)2]- provides higher axial anisotropy which slows down the QTM process (relaxation time for the QTM process is 2.70 × 10-5 s) in 1 as compared to NCS anions and MeOH molecules in 2 (1.03 × 10-8 s), and is responsible for the absence of an effective energy barrier in the latter complex as confirmed by ab initio calculations. The calculations also show that the presence of a large bidentate dimethoxydiphenyleborate ligand in axial positions may result in high-performance Dy-based single-ion magnets.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| |
Collapse
|
42
|
Tan P, Yang Y, Lv W, Jing R, Cui H, Zheng SJ, Chen L, Yuan A, Chen XT, Zhao Y. A cyanometallate- and carbonate-bridged dysprosium chain complex with a pentadentate macrocyclic ligand: synthesis, structure, and magnetism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel one-dimensional polymeric cyanometallate- and carbonate-bridged dysprosium(iii) chain with a pentadentate macrocyclic ligand exhibits field-induced multiple-relaxation processes.
Collapse
Affiliation(s)
- Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shao-Jun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuyuan Zhao
- School of Medical Technology, Zhenjiang College, Zhenjiang 212003, P. R. China
| |
Collapse
|
43
|
Long J, Lyubov DM, Kissel' AA, Gogolev IA, Tyutyunov AA, Nelyubina YV, Salles F, Guari Y, Cherkasov AV, Larionova J, Trifonov AA. Effect on the geometry over the slow relaxation of the magnetization in a series of erbium( iii) complexes based on halogenated ligands. CrystEngComm 2022. [DOI: 10.1039/d2ce00856d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erbium(iii) complexes based on halogenated ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Alexander A. Kissel'
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Ilia A. Gogolev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Andrey A. Tyutyunov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Fabrice Salles
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Yannick Guari
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
44
|
Zhu Z, Jin GQ, Wu J, Ying X, Zhao C, Zhang JL, Tang J. Highly symmetric Ln( iii) boron-containing macrocycles as bright fluorophores for living cell imaging. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron-assisted highly symmetric rigid Ln macrocycles were designed and synthesized, showing high brightness and promising potential applications in bioimaging.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
45
|
Zhao C, Zhu Z, Li XL, Tang J. Air-stable chiral mono- and dinuclear dysprosium single-molecule magnets: steric hindrance of hexaazamacrocycles. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00754a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pairs of air-stable chiral Dy-SMMs were constructed using different sterically hindered hexaazamacrocycles as equatorial ligands, leading to a nuclearity increase from 1 to 2.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
46
|
Liu S, Gil Y, Zhao C, Wu J, Zhu Z, Li XL, Aravena D, Tang J. A conjugated Schiff-base macrocycle weakens the transverse crystal field of air-stable dysprosium single-molecule magnets. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01565j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of a self-condensed conjugated macrocycle over a [2 + 2] conventional macrocycle in weakening the transverse crystal field and boosting axiality provides a new route to construct high-performance air-stable lanthanide SMMs.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
47
|
Ding YS, Blackmore WJA, Zhai YQ, Giansiracusa MJ, Reta D, Vitorica-Yrezabal I, Winpenny REP, Chilton NF, Zheng YZ. Studies of the Temperature Dependence of the Structure and Magnetism of a Hexagonal-Bipyramidal Dysprosium(III) Single-Molecule Magnet. Inorg Chem 2021; 61:227-235. [PMID: 34939782 DOI: 10.1021/acs.inorgchem.1c02779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hexagonal-bipyramidal lanthanide(III) complex [Dy(OtBu)Cl(18-C-6)][BPh4] (1; 18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane ether) displays an energy barrier for magnetization reversal (Ueff) of ca. 1000 K in a zero direct-current field. Temperature-dependent X-ray diffraction studies of 1 down to 30 K reveal bending of the Cl-Ln-OtBu angle at low temperature. Using ab initio calculations, we show that significant bending of the O-Dy-Cl angle upon cooling from 273 to 100 K leads to a ca. 10% decrease in the energy of the excited electronic states. A thorough exploration of the temperature and field dependencies of the magnetic relaxation rate reveals that magnetic relaxation is dictated by five mechanisms in different regimes: Orbach, Raman-I, quantum tunnelling of magnetization, and Raman-II, in addition to the observation of a phonon bottleneck effect.
Collapse
Affiliation(s)
- You-Song Ding
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William J A Blackmore
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Marcus J Giansiracusa
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniel Reta
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Inigo Vitorica-Yrezabal
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard E P Winpenny
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
48
|
Wu J, Demeshko S, Dechert S, Meyer F. Macrocycle based dinuclear dysprosium(III) single molecule magnets with local D5h coordination geometry. Dalton Trans 2021; 50:17573-17582. [PMID: 34806736 DOI: 10.1039/d1dt02815d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted approaches for manipulating the coordination geometry of lanthanide ions are a promising way to synthesize high-performance single-molecule magnets (SMMs), but most of the successful examples reported to date focus on mononuclear complexes. Herein, we describe a strategy to assemble dinuclear SMMs with DyIII ions in approximate D5h coordination geometry based on pyrazolate-based macrocyclic ligands with two binding sites. A Dy4 complex with a rhomb-like arrangement of four DyIII as well as two dinuclear complexes having axial chlorido ligands (Dy2·Cl and Dy2*·Cl) were obtained; in the latter case, substituting Cl- by SCN- gave Dy2·SCN. Magneto-structural studies revealed that the μ-OH bridges with short Dy-O bonds dominate the magnetic anisotropy of the DyIII ions in centrosymmetric Dy4 to give a vortex type diamagnetic ground state. Dynamic magnetic studies of Dy4 identified two relaxation processes under zero field, one of which is suppressed after applying a dc field. For complexes Dy2·Cl and Dy2*·Cl, the DyIII ions feature almost perfect D5h environment, but both complexes only behave as field-induced SMMs (Ueff = 19 and 25 K) due to the weak axial Cl- donors. In Dy2·SCN additional MeOH coordination leads to a distorted D2d geometry of the DyIII ions, yet SMMs properties at zero field are observed due to the relatively strong axial ligand field provided by SCN- (Ueff = 43 K). Further elaboration of preorganizing macrocyclic ligands appears to be a promising strategy for imposing a desired coordination geometry with parallel orientation of the anisotropy axes of proximate DyIII ions in a targeted approach.
Collapse
Affiliation(s)
- Jianfeng Wu
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany. .,School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| |
Collapse
|
49
|
Ślepokura K, Cabreros TA, Muller G, Lisowski J. Sorting Phenomena and Chirality Transfer in Fluoride-Bridged Macrocyclic Rare Earth Complexes. Inorg Chem 2021; 60:18442-18454. [PMID: 34784708 PMCID: PMC8653217 DOI: 10.1021/acs.inorgchem.1c03034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/28/2022]
Abstract
The reaction of fluoride anions with mononuclear lanthanide(III) and yttrium(III) hexaaza-macrocyclic complexes results in the formation of dinuclear fluoride-bridged complexes. As indicated by X-ray crystal structures, in these complexes two metal ions bound by the macrocycles are linked by two or three bridging fluoride anions, depending on the type of the macrocycle. In the case of the chiral hexaaza-macrocycle L1 derived from trans-1,2-diaminocyclohexane, the formation of these μ2-fluorido dinuclear complexes is accompanied by enantiomeric self-recognition of macrocyclic units. In contrast, this kind of recognition is not observed in the case of complexes of the chiral macrocycle L2 derived from 1,2-diphenylethylenediamine. The reaction of fluoride with a mixture of mononuclear complexes of L1 and L2, containing two different Ln(III) ions, results in narcissistic sorting of macrocyclic units. Conversely, a similar reaction involving mononuclear complexes of L1 and complexes of achiral macrocycle L3 based on ethylenediamine results in sociable sorting of macrocyclic units and preferable formation of heterodinuclear complexes. In addition, formation of these heterodinuclear complexes is accompanied by chirality transfer from the chiral macrocycle L1 to the achiral macrocycle L3 as indicated by CPL and CD spectra.
Collapse
Affiliation(s)
- Katarzyna Ślepokura
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Trevor A. Cabreros
- Department
of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, United States
| | - Gilles Muller
- Department
of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, United States
| | - Jerzy Lisowski
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
50
|
Dong Y, Zhu L, Yin B, Zhu X, Li D. Regulating the magnetic properties of seven-coordinated Dy(III) single-ion magnets through the effect of positional isomers on axial crystal-field. Dalton Trans 2021; 50:17328-17337. [PMID: 34787614 DOI: 10.1039/d1dt02925h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Six Dy(III) single-ion magnets (SIMs) [Dy(n-OMe-bbpen)X] were synthesized by a solvothermal reaction with three positional isomers (ortho, meta, and para) of ligands n-OMe-H2bbpen and dysprosium halides DyX3, (n-OMe-H2bbpen = N,N'-bis(2-hydroxy-n-methoxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine; n = 3, X = Cl, 1; n = 3, X = Br, 2; n = 4, X = Cl, 3; n = 4, X = Br, 4; n = 5, X = Cl, 5; n = 5, X = Br, 6). Dynamic magnetic measurements revealed that the six complexes possess notably different effective barriers of magnetic reversal: 872.0 K (1), 1210.1 K (2), 137.9 K (3), 602.6 K (4), 907.0 K (5) and 1216.7 K (6). 6 showed the best performance as SIMs among the six Dy(III) complexes. Moreover, the magnetic hysteresis loops of 6 remained open at 21 K. The crystal structures indicate the switching of local symmetry around Dy(III) ion, aroused by the variation in intermolecular interactions and steric effects. This switch is primarily correlated with the distinction of magnetic properties. In addition, ab initio calculations confirmed that the different electrostatic potential around Dy(III) ion stemming from the electronic effect of the OMe-substituted group is another factor leading to the distinction in magnetic properties. This work warns us that when designing ligands for Dy-SIMs, the effect of positional isomerism on magnetic performance must be considered, which is one of the factors that can easily be overlooked.
Collapse
Affiliation(s)
- Yubao Dong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Li Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Xinrui Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dongfeng Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|