1
|
Hawkins BC, Chalker JM, Coote ML, Bissember AC. Electrochemically Generated Carbocations in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407207. [PMID: 39075778 DOI: 10.1002/anie.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This Minireview examines a selection of case studies that showcase distinctive and enabling electrochemical approaches that have allowed for the generation and reaction of carbocation intermediates under mild conditions. Particular emphasis is placed on the progress that has been made in this area of organic synthesis and polymer chemistry over the past decade.
Collapse
Affiliation(s)
- Bill C Hawkins
- Department of Chemistry, University of Otago, 9054, Dunedin, Otago, New Zealand
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Lal S, Rao Cheekatla S, Suresh A, Ayyagari N, Mallick L, Pallikonda G, Desai P, Ahirwar P, Chowdhury A, Kumbhakarna N, Namboothiri INN. Synthesis, Characterization and Energetic Properties of Hydroxymethyl-Bishomocubanone Derivatives. Chemistry 2024; 30:e202401265. [PMID: 38863386 DOI: 10.1002/chem.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The present work reports synthesis, characterization and theoretical insights on novel hydroxymethyl-bishomocubanone derivatives. Twelve new bishomocubanes (BHCs) were synthesized and fully characterized by various spectroscopic techniques and single crystal X-ray analysis. The densities of the title compounds were in the range of 1.30-1.59 g/cm3. Density-functional theory (DFT) based calculations at B3LYP/6-311++G(d,p) level of theory were performed on ten selected BHC based cage compounds. Propulsive and ballistic properties of newly synthesized hydroxymethyl-bishomocubanone derivatives in solid and liquid propulsion systems were calculated, and the results suggested that these compounds are superior to conventional fuel RP1 and binder HTPB. The detonation parameters revealed that these compounds are not explosive in nature and safe to use as solid propellants. Furthermore, kinetic and thermal stabilities of the title compounds were determined by HOMO-LUMO energy gap, ESP maps, impact sensitivity (h50) and bond dissociation energies (BDEs) followed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Three compounds, a dinitroazide (Isp,vac=310.98 s), a dinitrate (Isp,vac=309.51 s), and a dinitronitrate (Isp,vac=309.20s) were found to be excellent candidates for volume limited applications.
Collapse
Affiliation(s)
- Sohan Lal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Subba Rao Cheekatla
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Alati Suresh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Narasimham Ayyagari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Lovely Mallick
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gangaram Pallikonda
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Poonam Desai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Parmanand Ahirwar
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
3
|
Yu Q, Zhou D, Yu P, Song C, Ze Tan, Li J. Silver-Catalyzed Decarboxylative Nitrooxylation of Aliphatic Carboxylic Acids. Org Lett 2024; 26:5856-5861. [PMID: 38950381 DOI: 10.1021/acs.orglett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Here, we present a silver-catalyzed decarboxylative nitrooxylation via a radical-based approach. The substrate scope of this reaction prototype extends to nonactivated primary and secondary carboxylic acids. This protocol provides a practical method for the synthesis of an unprecedented family of organic nitrates and exhibits wide functional group compatibility. Preliminary mechanistic studies reveal that a high-valent silver(II) nitrate complex is a versatile NO3 resource pool, allowing for facile C-O bond formation.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Pingping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Ze Tan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Donnier-Valentin L, Kassamba S, Legros J, Fressigné C, Vuluga D, Brown RCD, Linclau B, De Paolis M. Photoinduced Formation of Cubyl Aryl Thioethers and Synthesis of Monocubyl Analogue of Dapsone. Org Lett 2023. [PMID: 37991751 DOI: 10.1021/acs.orglett.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
1,4-Disubstituted cubyl aryl thioethers were generated from the corresponding iodocubanes and aryl thiolates upon UV irradiation in dimethyl sulfoxide at room temperature. This simple procedure was found to be compatible with a variety of substituted aryl thiolates. This finding paved the way to a synthesis of the monocubyl analogue of dapsone, a key molecule in the treatment of leprosy, also known as Hansen's disease, and of acne.
Collapse
Affiliation(s)
| | - Seydou Kassamba
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | - Julien Legros
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | | | - Daniela Vuluga
- INSA Rouen, PBS, UMR 6270, CNRS, 76801 Saint-Etienne-du-Rouvray, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- Department of Organic and Molecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Michaël De Paolis
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| |
Collapse
|
5
|
Yu J, Liu T, Sun W, Zhang Y. Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Org Lett 2023; 25:7816-7821. [PMID: 37870311 DOI: 10.1021/acs.orglett.3c02997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An electrochemical strategy for the decarboxylative elimination of carboxylic acids to alkenes at room temperature has been developed. This mild and oxidant-free method provides a green alternative to traditional thermal decarboxylation reactions. Structurally diverse aliphatic carboxylic acids, including biologically active drugs, underwent smooth conversion to the corresponding alkenes in good to excellent yields.
Collapse
Affiliation(s)
- Jiage Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Teng Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wanhao Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100871, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Ashraf T, Rodriguez AP, Mei BT, Mul G. Electrochemical decarboxylation of acetic acid on boron-doped diamond and platinum-functionalised electrodes for pyrolysis-oil treatment. Faraday Discuss 2023; 247:252-267. [PMID: 37466106 DOI: 10.1039/d3fd00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical decarboxylation of acetic acid on boron-doped-diamond (BDD) electrodes was studied as a possible means to decrease the acidity of pyrolysis oil. It is shown that decarboxylation occurs without the competitive oxygen evolution reaction (OER) on BDD electrodes to form methanol and methyl acetate by consecutive reaction of hydroxyl radicals with acetic acid. The performance is little affected by the applied current density (and associated potential), concentration, and the pH of the solution. At current densities above 50 mA cm-2, faradaic efficiencies (FEs) of 90% towards the decarboxylation products are obtained, confirmed by in situ electrochemical mass spectrometry (ECMS) investigation showing only small amounts of oxygen formed by water oxidation. Using platinum-modified BDD electrodes, it is shown that selectivity to ethane, the Kolbe product, strongly depends on the shape and geometry of the platinum particles. Using nano-thorn-like Pt particles, a faradaic efficiency of approx. 40% towards ethane can be obtained, whereas 3D porous platinum nanoparticles showed high selectivity towards the OER. Using thin platinum layers, a high FE of >70% towards ethane was obtained, which is thickness-independent at layer thicknesses above 20 nm. Comparison with other substrates revealed that BDD is an ideal support for Pt functionalisation, giving advantages of stability and high-value-product formation (ethane and methanol). In short, this work provides guidelines for electrode fabrication in the context of the electrochemical upgrading of biomass feedstocks by acid decarboxylation.
Collapse
Affiliation(s)
- Talal Ashraf
- PhotoCatalytic Synthesis Group (PCS-TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Ainoa Paradelo Rodriguez
- PhotoCatalytic Synthesis Group (PCS-TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Bastian Timo Mei
- PhotoCatalytic Synthesis Group (PCS-TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
- Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Guido Mul
- PhotoCatalytic Synthesis Group (PCS-TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
7
|
Krafft MP, Riess JG. About Perfluoropolyhedranes, Their Electron-Accepting Ability and Questionable Supramolecular Hosting Capacity. Angew Chem Int Ed Engl 2023; 62:e202302942. [PMID: 37208990 DOI: 10.1002/anie.202302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess., 67034, Strasbourg Cedex, France
| | - Jean G Riess
- Harangoutte Institute, 68160, Ste-Croix-aux-Mines, France
| |
Collapse
|
8
|
Levitre G, Keess S, Molander GA. Photoinduced Diastereoselective Aminoalkylation of Cubanes. Org Lett 2023. [PMID: 37216214 DOI: 10.1021/acs.orglett.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Abstract
Perfluorination gives cubane the capacity to host an extra electron in its inner structure.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 67034 Strasbourg, France
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste-Croix-aux-Mines, France
| |
Collapse
|
10
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
11
|
Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021; 19:7737-7753. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.
Collapse
Affiliation(s)
- Arlene Bonner
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Aisling Loftus
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Alex C Padgham
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| |
Collapse
|
12
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
13
|
Collin DE, Kovacic K, Light ME, Linclau B. Synthesis of Ortho-Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Org Lett 2021; 23:5164-5169. [PMID: 34133174 DOI: 10.1021/acs.orglett.1c01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cubane ring has received intense attention as a 3D benzene isostere and scaffold. Mono- and 1,4-disubstituted cubanes are well-described. Here we report a practical procedure for a direct radical-mediated chlorocarbonylation process initially reported by Bashir-Hashemi, to access a range of 2-substituted 1,4-cubanedicarboxylic ester derivatives. A subsequent regioselective ester hydrolysis to give fully differentiated 1,2,4-trisubstituted cubanes is demonstrated.
Collapse
Affiliation(s)
- Diego E Collin
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Kristina Kovacic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
14
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
15
|
Yang Z, Yu Y, Lai L, Zhou L, Ye K, Chen FE. Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
16
|
Sbei N, Aslam S, Ahmed N. Organic synthesis via Kolbe and related non-Kolbe electrolysis: an enabling electro-strategy. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00047k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, the electrolysis process, where the anodic oxidation of carboxylic acids leads to decarboxylation, has been discussed to synthesize organic molecules.
Collapse
Affiliation(s)
- Najoua Sbei
- Organic Chemistry Department
- Peoples' Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
- Institute of Nanotechnology
| | - Samina Aslam
- Department of Chemistry
- The Women University Multan
- Multan 60000
- Pakistan
| | - Nisar Ahmed
- International Centre for Chemical and Biological Sciences
- HEJ Research Institute of Chemistry
- University of Karachi
- Karachi 75270
- Pakistan
| |
Collapse
|
17
|
Elsherbini M, Moran WJ. Scalable electrochemical synthesis of diaryliodonium salts. Org Biomol Chem 2021; 19:4706-4711. [PMID: 33960987 DOI: 10.1039/d1ob00457c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic and acyclic diaryliodonium are synthesised by anodic oxidation of iodobiaryls and iodoarene/arene mixtures, respectively, in a simple undivided electrolysis cell in MeCN-HFIP-TfOH without any added electrolyte salts. This atom efficient process does not require chemical oxidants and generates no chemical waste. More than 30 cyclic and acyclic diaryliodonium salts with different substitution patterns were prepared in very good to excellent yields. The reaction was scaled-up to 10 mmol scale giving more than four grams of dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (>95%) in less than three hours. The solvent mixture of the large-scale experiment was recovered (>97%) and recycled several times without significant reduction in yield.
Collapse
Affiliation(s)
- Mohamed Elsherbini
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Wesley J Moran
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
18
|
Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS, Todd MH. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J Med Chem 2020; 63:11585-11601. [PMID: 32678591 DOI: 10.1021/acs.jmedchem.0c00746] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - G Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, Victoria 3168, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Raman Sharma
- Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - R Scott Obach
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
19
|
Jud W, Kappe CO, Cantillo D. Development and Assembly of a Flow Cell for Single‐Pass Continuous Electroorganic Synthesis Using Laser‐Cut Components. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/cmtd.202000042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - David Cantillo
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
20
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
21
|
Taking electrodecarboxylative etherification beyond Hofer-Moest using a radical C-O coupling strategy. Nat Commun 2020; 11:4407. [PMID: 32879323 PMCID: PMC7468261 DOI: 10.1038/s41467-020-18275-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/08/2022] Open
Abstract
Established electrodecarboxylative etherification protocols are based on Hofer-Moest-type reaction pathways. An oxidative decarboxylation gives rise to radicals, which are further oxidised to carbocations. This is possible only for benzylic or otherwise stabilised substrates. Here, we report the electrodecarboxylative radical-radical coupling of lithium alkylcarboxylates with 1-hydroxybenzotriazole at platinum electrodes in methanol/pyridine to afford alkyl benzotriazole ethers. The substrate scope of this electrochemical radical coupling extends to primary and secondary alkylcarboxylates. The benzotriazole products easily undergo reductive cleavage to the alcohols. They can also serve as synthetic hubs to access a wide variety of functional groups. This reaction prototype demonstrates that electrodecarboxylative C-O bond formation can be taken beyond the intrinsic substrate limitations of Hofer-Moest mechanisms.
Collapse
|
22
|
Senge MO, Grover N. Synthetic Advances in the C–H Activation of Rigid Scaffold Molecules. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The remarkable structural and electronic properties of rigid non-conjugated hydrocarbons afford attractive opportunities to design molecular building blocks for both medicinal and material applications. The bridgehead positions provide the possibility to append diverse functional groups at specific angles and in specific orientations. The current review summarizes the synthetic development in CH functionalization of three rigid scaffolds namely: (a) cubane, (b) bicyclo[1.1.1]pentane (BCP), (c) adamantane.1 Introduction2 Cubane2.1 Cubane Synthesis2.2 Cubane Functionalization3 Bicyclo[1.1.1]pentane (BCP)3.1 BCP Synthesis3.2 BCP Functionalization4 Adamantane4.1 Adamantane Synthesis4.2 Adamantane Functionalization5 Conclusions and Outlook
Collapse
Affiliation(s)
- Mathias O. Senge
- School of Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute
| | | |
Collapse
|
23
|
Folgueiras-Amador AA, Teuten AE, Pletcher D, Brown RCD. A design of flow electrolysis cell for ‘Home’ fabrication. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00019a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optimising the performance of a simple electrolysis flow cell design in recycle mode; application to selective anodic and cathodic electrosyntheses.
Collapse
Affiliation(s)
| | - Alex E. Teuten
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Derek Pletcher
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | | |
Collapse
|
24
|
Abstract
Despite the long history of electroorganic synthesis, it did not participate in the mainstream of chemical research for a long time. This is probably due to the lack of equipment and standardized protocols. However, nowadays organic electrochemistry is witnessing a renaissance, and a wide range of interesting electrochemical transformations and methodologies have been developed, not only for academic purposes but also for large scale industrial production. Depending on the source of electricity, electrochemical methods can be inherently green and environmentally benign and can be easily controlled to achieve high levels of selectivity. In addition, the generation and consumption of reactive or unstable intermediates and hazardous reagents can be achieved in a safe way. Limitations of traditional batch-type electrochemical methods such as the restricted electrode surface, the necessity of supporting electrolytes, and the difficulties in scaling up can be alleviated using electrochemical flow cells. Microreactors offer high surface-to-volume ratios and enable precise control over temperature, residence time, flow rate, and pressure. In addition, efficient mixing, enhanced mass and heat transfer, and handling of small volumes lead to simpler scaling-up protocols and minimize safety concerns. Electrolysis under flow conditions reduces the possibility of overoxidation as the reaction mixture is flown continuously out of the reactor in contrast to traditional batch-type electrolysis cells. In this Account, we highlight our contributions in the area of electroorganic synthesis under flow conditions over the past decade. We have designed and manufactured different generations of electrochemical flow cells. The first-generation reactor was effectively used in developing a simple one-step synthesis of diaryliodonium salts and used in proof-of-concept reactions such as the trifluoromethylation of electron-deficient alkenes via Kolbe electrolysis of trifluoroacetic acid in addition to the selective deprotection of the isonicotinyloxycarbonyl (iNoc) group from carbonates and thiocarbonates. The improved second-generation flow cell enabled the development of efficient synthesis of isoindolinones, benzothiazoles, and thiazolopyridines, achieving gram-scale for some of the products easily without changing the reactor design or reoptimizing the reaction parameters. In addition, the same reactor was used in the development of an efficient continuous flow electrochemical synthesis of hypervalent iodine reagents. The generated unstable hypervalent iodine reagents were easily used without isolation in various oxidative transformations in a coupled flow/flow manner and could be easily transformed into bench-stable reagents via quantitative ligand exchange with the appropriate acids. Our second-generation reactor was further improved and commercialized by Vapourtec Ltd. We have demonstrated the power of online analysis in accelerating optimizations and methodology development. Online mass spectrometry enabled fast screening of the charge needed for the cyclization of amides to isoindolinones. The power of online 2D-HPLC combined with a Design of Experiments approach empowered the rapid optimization of stereoselective electrochemical alkoxylations of amino acid derivatives.
Collapse
Affiliation(s)
- Mohamed Elsherbini
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|