1
|
Patel SS, Gupta S, Tripathi CB. Organocatalyzed Hydroacylation of Enones by Photosensitization of Acyl Silanes. Chem Asian J 2024:e202400240. [PMID: 38600748 DOI: 10.1002/asia.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
A mild protocol for hydroacylation of enones through photosensitization of acyl silanes with thioxanthone under blue light (455 nm) irradiation is reported. A Brønsted acid is used as a cocatalyst in the reaction. The versatility of the method is demonstrated through inter- and intramolecular hydroacylation reaction. The hydroacylation product is applied for synthesizing an anti-HCV agent. Mechanistic insights are also provided through control experiments.
Collapse
Affiliation(s)
- Shiv Shankar Patel
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Samiksha Gupta
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Chandra Bhushan Tripathi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Zaitseva ER, Opryshko VE, Ivanov DS, Mikhaylov AA, Smirnov AY, Baranov MS. Synthesis of chroman-annulated cyclopropanols via photoinduced intramolecular [2 + 1]-cycloaddition of 2-allyloxybenzaldehydes. Org Biomol Chem 2023; 21:9082-9085. [PMID: 37942901 DOI: 10.1039/d3ob01520c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Allyloxybenzaldehydes undergo [2 + 1] cycloadditions under 365 nm LED irradiation to form the corresponding chroman-fused cyclopropanols. The reaction proceeds easily without any catalysts or additives in dimethyl sulfoxide.
Collapse
Affiliation(s)
- Elvira R Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| | - Victoria E Opryshko
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| | - Dmitrii S Ivanov
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| | - Andrey A Mikhaylov
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997, Moscow, Russia
| |
Collapse
|
3
|
Lind F, Markelov K, Studer A. Benzoyldiisopropylchlorosilane: a visible light photocleavable alcohol protecting group. Chem Sci 2023; 14:12615-12620. [PMID: 38020376 PMCID: PMC10646889 DOI: 10.1039/d3sc04975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Silyl chlorides are highly valuable and popular reagents for the protection of alcohols. In this edge article we introduce a photocleavable alcohol protecting group on the basis of acyl silanes. To achieve this, acylchlorosilanes that represent a new class of acylsilanes were developed. They can be easily synthesized in a concise sequence of three steps in high overall yield. Alcohol silyl protection takes place under established mild conditions, akin to those associated with classical silicon-based protecting groups. The removal of the Si-group is achieved at room temperature through exposure to visible light (456 nm) in methanol. We demonstrate a broad spectrum of substrates with remarkable tolerance toward diverse functional groups, highlighting a substantial level of orthogonality with respect to other protecting groups. Furthermore, we showcase the robustness of this approach against various transformations.
Collapse
Affiliation(s)
- Florian Lind
- Organisch-Chemisches Institut, Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Kirill Markelov
- Organisch-Chemisches Institut, Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
4
|
Atkin L, Ross HJ, Priebbenow DL. Acylsilanes in Transition-Metal-Catalyzed and Photochemical Reactions: Clarifying Product Formation. J Org Chem 2023; 88:14205-14209. [PMID: 37738455 DOI: 10.1021/acs.joc.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Acylsilanes are able to react as nucleophilic carbene precursors, electrophiles, and directing groups in C-H functionalization. To date, some of the products reportedly formed during transition-metal-catalyzed and photochemical reactions involving acylsilanes have been incorrectly assigned. To provide clarity, we herein address these structural misassignments and detail the revised structures. New insights into the reactivity of acylsilanes were also afforded via the discovery that light-induced siloxy carbenes participate in intramolecular 1,2-carbonyl addition to proximal esters.
Collapse
Affiliation(s)
- Liselle Atkin
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Hannah J Ross
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel L Priebbenow
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Zheng L, Guo X, Li YC, Wu Y, Xue XS, Wang P. Cu/SaBox-Catalyzed Photoinduced Coupling of Acylsilanes with Alkynes. Angew Chem Int Ed Engl 2023; 62:e202216373. [PMID: 36465061 DOI: 10.1002/anie.202216373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/09/2022]
Abstract
The transition metal-catalyzed cross-coupling reaction with Fischer metal carbene intermediates bearing an electron-rich alkoxyl or siloxyl group remains a big challenge due to the lack of readily available corresponding carbene precursors. Herein, we report the coupling of alkynes with the Fischer-type copper carbene species bearing a α-siloxyl group, which could be in situ generated from acylsilanes catalytically under photoirradiation and redox-neutral conditions. The side-arm modified bisoxazoline (SaBox) ligands prove to be crucial for this coupling reaction, which provides the corresponding alkynyl alcohol in high yields with remarkable heterocycle tolerance and broad substrate scope.
Collapse
Affiliation(s)
- Long Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xueying Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ying-Chao Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xiao-Song Xue
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Cascade cyclization of alkene-tethered acylsilanes and allylic sulfones enabled by unproductive energy transfer photocatalysis. Nat Commun 2022; 13:6111. [PMID: 36245017 PMCID: PMC9573877 DOI: 10.1038/s41467-022-33730-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Developing photo-induced cascade cyclization of alkene-tethered acylsilanes is challenging, because acylsilanes are unstable under light irradiation. Herein, we report that the energy transfer from excited acylsilanes to a photocatalyst that possesses lower triplet energy can inhibit the undesired decomposition of acylsilanes. With neutral Eosin Y as the photocatalyst, an efficient synthesis of cyclopentanol derivatives is achieved with alkene-tethered acylsilanes and allylic sulfones. The reaction shows broad substrate scope and the synthetic potential of this transformation is highlighted by the construction of cyclopentanol derivatives which contain fused-ring or bridged-ring. Acylsilanes decompose under light irradiation, and this limits their use in light-induced organic transformations. Here the authors report a strategy to inhibit the light-induced decomposition of acylsilanes, enabling the photochemical synthesis of cyclopentanol derivatives from alkene-tethered acylsilanes and allylic sulfones.
Collapse
|
7
|
Zhang Y, Chen J, Huang H. Radical Brook Rearrangements: Concept and Recent Developments. Angew Chem Int Ed Engl 2022; 61:e202205671. [DOI: 10.1002/anie.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Jun‐Jie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Huan‐Ming Huang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
8
|
Tricoire M, Wang D, Rajeshkumar T, Maron L, Danoun G, Nocton G. Electron Shuttle in N-Heteroaromatic Ni Catalysts for Alkene Isomerization. JACS AU 2022; 2:1881-1888. [PMID: 36032537 PMCID: PMC9400170 DOI: 10.1021/jacsau.2c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Ding Wang
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Thayalan Rajeshkumar
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Grégory Danoun
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| |
Collapse
|
9
|
Yamaguchi K, Shimizu T, Miura A, Ishida K, Kusama H. Photoinduced Intramolecular Cyclization of Acylsilanes Bearing a Boronate Moiety: Construction of a Highly Strained trans-Fused Bicyclo[3.3.0]octane Skeleton. Org Lett 2022; 24:5807-5811. [PMID: 35920627 DOI: 10.1021/acs.orglett.2c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reliable strategy for the construction of trans-fused bicyclo[n.3.0] skeletons was explored by utilizing photoinduced cyclization of acylsilanes bearing a boronate. The substrates having an acylsilane and a boronate in a 1,2-trans relationship were prepared via hydroboration of cycloalkene derivatives. The desired cyclization was efficiently promoted by photoirradiation to give the trans-fused bicyclo[n.3.0] derivatives as a single diastereomer. It is noteworthy that this methodology enables the efficient construction of a highly strained trans-5-5 ring system.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Tsukasa Shimizu
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Arihito Miura
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kento Ishida
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
10
|
Larcombe CN, Malins LR. Accessing Diverse Cross-Benzoin and α-Siloxy Ketone Products via Acyl Substitution Chemistry. J Org Chem 2022; 87:9408-9413. [PMID: 35758296 DOI: 10.1021/acs.joc.2c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to diverse cross-benzoin and α-siloxy ketone products which leverages a simple yet underutilized C-C bond disconnection strategy is reported. Acyl substitution of readily accessible α-siloxy Weinreb amides with organolithium compounds enables access to a broad scope of aryl, heteroaryl, alkyl, alkenyl, and alkynyl derivatives. Enantiopure benzoins can be accessed via a chiral pool approach, and the utility of accessible cross-benzoins and α-siloxy ketones is highlighted in a suite of downstream synthetic applications.
Collapse
Affiliation(s)
- Chloe N Larcombe
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Zhang Y, Chen JJ, Huang HM. Radical Brook Rearrangement: Concept and Recent Developments. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Zhang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Jun-Jie Chen
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Huan-Ming Huang
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia RoadPudong 201210 Shanghai CHINA
| |
Collapse
|
12
|
Zhou G, Shen X. Visible-Light-Induced Organocatalyzed [2+1] Cyclization of Alkynes and Trifluoroacetylsilanes. Synlett 2022. [DOI: 10.1055/a-1840-5199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The synthesis of common cyclopropenes has been widely studied, but the synthesis of cyclopropenols is a significant challenge. Herein, we highlight our recent work on the synthesis of trifluoromethylated cyclopropenols through [2+1] cycloaddition reaction between alkynes and trifluoroacetylsilanes under visible-light-induced organocatalysis. The novel amphiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes can react effectively with both activated and unactivated alkynes. Broad substrate scope and good functional group tolerance have been achieved. Besides, the synthetic potential of this reaction was highlighted by a gram-scale reaction and the one-pot diastereoselective synthesis of trifluoromethylated cyclopropanols.
Collapse
|
13
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible-Light-Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022; 61:e202115334. [PMID: 34994996 DOI: 10.1002/anie.202115334] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Although the synthesis of common cyclopropenes has been well studied, the access to cyclopropenols is rather limited. Herein, we report the first synthesis of α-trifluoromethylated cyclopropenols via 2+1 cycloaddition reactions between alkynes and trifluoroacylsilanes, enabled by visible-light-induced organocatalysis. The novel ambiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes reacted efficiently with both activated and non-activated alkynes. The reaction features simple operation, mild conditions, broad substrate scope and good functional group tolerance. The synthetic potential of the reaction is highlighted by the gram-scale reactions and first synthesis of α-trifluoromethylated cyclopropanols through the combination of the 2+1 cyclization and high diastereoselective hydrogenation reaction in one pot.
Collapse
Affiliation(s)
- Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
14
|
Ueda Y, Masuda Y, Iwai T, Imaeda K, Takeuchi H, Ueno K, Gao M, Hasegawa JY, Sawamura M. Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes. J Am Chem Soc 2022; 144:2218-2224. [PMID: 34990146 DOI: 10.1021/jacs.1c11526] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a visible-light-induced copper-catalyzed highly enantioselective umpolung allylic acylation reaction with acylsilanes as acyl anion equivalents. Triplet-quenching experiments and DFT calculations supported our reaction design, which is based on copper-to-acyl metal-to-ligand charge transfer (MLCT) photoexcitation that generates a charge-separated triplet state as a highly reactive intermediate. According to the calculations, the allylic phosphate substrate in the excited state undergoes novel molecular activation into an allylic radical weakly bound to the copper complex. The allyl radical fragment undergoes copper-mediated regio- and stereocontrolled coupling with the acyl group under the influence of the chiral N-heterocyclic carbene ligand.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yusuke Masuda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Keisuke Imaeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Takeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
15
|
Ishida K, Kusama H. Generation of (amino)(boryloxy)carbenes from carbamoylboranes and their coupling reaction with aldehydes. Chem Commun (Camb) 2022; 58:1625-1628. [PMID: 35022628 DOI: 10.1039/d1cc06377d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbamoylboranes were found to react with various aldehydes under heating conditions to give α-hydroxycarboxamides in good yields. A DFT study supports the mechanism, which involves thermally generated (amino)(boryloxy)carbene intermediates. To our knowledge, this is the first report on the generation of (amino)(boryloxy)carbene intermediates from carbamoylboranes and its application to carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Kento Ishida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
16
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible‐Light‐Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gang Zhou
- Wuhan University Institute for Advanced Studies CHINA
| | - Xiao Shen
- Wuhan University Institute for Advanced Studies 299 Bayi Road 430072 Wuhan CHINA
| |
Collapse
|
17
|
Bunyamin A, Hua C, Polyzos A, Priebbenow DL. Intramolecular Photochemical [2+1]-Cycloadditions of Nucleophilic Siloxy Carbenes. Chem Sci 2022; 13:3273-3280. [PMID: 35414869 PMCID: PMC8926286 DOI: 10.1039/d2sc00203e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds. This cyclopropanation process requires only visible light irradiation to proceed, circumventing the use of exogenous (photo)catalysts, sensitisers or additives and showcases a vastly underexplored mode of reactivity for nucleophilic carbenes in chemical synthesis. The discovery of additional transformations including a cyclopropanation/retro-Michael/Michael cascade process to afford chromanones and a photochemical C–H insertion reaction are also described. Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds.![]()
Collapse
Affiliation(s)
- Amanda Bunyamin
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
| | - Carol Hua
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- School of Life and Environmental Sciences, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Anastasios Polyzos
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Daniel L Priebbenow
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
18
|
Takeuchi T, Aoyama T, Orihara K, Ishida K, Kusama H. Visible-Light-Induced In Situ Generation of Fischer-Type Copper Carbene Complexes from Acylsilanes and Its Application to Catalytic [4 + 1] Cycloaddition with Siloxydienes. Org Lett 2021; 23:9490-9494. [PMID: 34846907 DOI: 10.1021/acs.orglett.1c03683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel methodology for in situ generation of Fischer-type metal-carbene complexes was developed. Photoirradiation to a mixture of an acylsilane and a cationic copper complex cleanly gave a Fischer-type copper-siloxycarbene complex, which was detected by spectroscopic methods. This carbene complex reacted with siloxydienes in a [4 + 1] cycloaddition manner to give cyclopentene derivatives. It is noteworthy that this reaction proceeds with a catalytic amount of copper through in situ generation of a Fischer-type copper-siloxycarbene complex intermediate.
Collapse
Affiliation(s)
- Taiichi Takeuchi
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Tsukasa Aoyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kurumi Orihara
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kento Ishida
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
19
|
Priebbenow DL, Hua C. Acyl silane directed Cp*Rh(III)-catalysed alkylation/annulation reactions. Chem Commun (Camb) 2021; 57:7938-7941. [PMID: 34286753 DOI: 10.1039/d1cc03051e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies into the Cp*Rh(iii)-catalysed hydroarylation of alkenes with aryl acyl silanes led to the discovery of a new synthetic strategy to access unique silicon derived indene frameworks. Rather than protodemetalation of the metal enolate formed following insertion of an alkene into the aryl C-H bond, intramolecular aldol condensation of the acyl silane occurred to generate a series of 2-formyl- and 2-acetyl-3-silyl indenes. This represents only the second example of rhodium-catalysed C-H functionalisation employing acyl silanes as weakly coordinating directing groups and the intramolecular aldol condensation strategy was extended to access analogous silicon derived benzofurans.
Collapse
Affiliation(s)
- Daniel L Priebbenow
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
20
|
Ye J, Bellotti P, Paulisch TO, Daniliuc CG, Glorius F. Durch sichtbares Licht vermittelte Cycloadditionen von α‐Ketoacylsilanen mit Iminen: Einfache Synthese von β‐Lactamen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian‐Heng Ye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tiffany O. Paulisch
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
21
|
Ye JH, Bellotti P, Paulisch TO, Daniliuc CG, Glorius F. Visible-Light-Induced Cycloaddition of α-Ketoacylsilanes with Imines: Facile Access to β-Lactams. Angew Chem Int Ed Engl 2021; 60:13671-13676. [PMID: 33729650 DOI: 10.1002/anie.202102451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Indexed: 11/06/2022]
Abstract
We report the synthesis of β-lactams from α-ketoacylsilanes and imines, which proceeds via a formal [2+2] photochemical cycloaddition with in situ generation of siloxyketene. This mild and operationally simple reaction proceeds in an atom-economic fashion with broad substrate scope, including aldimines, ketimines, hydrazones, and fused nitrogen heterocycles, affording a variety of important β-lactams with satisfactory diastereoselectivities in most cases. This reaction also features good functional-group tolerance, facile scalability and product diversification. Experimental and computational studies suggest that α-ketoacylsilanes can serve as photochemical precursors by engaging in a 1,3 silicon shift to the distal carbonyl group.
Collapse
Affiliation(s)
- Jian-Heng Ye
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Tiffany O Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
22
|
Priebbenow DL, Pilkington RL, Hearn KN, Polyzos A. Fluorinated Ketones as Trapping Reagents for Visible-Light-Induced Singlet Nucleophilic Carbenes. Org Lett 2021; 23:2783-2789. [PMID: 33733797 DOI: 10.1021/acs.orglett.1c00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singlet nucleophilic carbenes (SNCs) containing only one heteroatom donor remain underutilized in chemical synthesis. We recently discovered that visible-light-induced SNC intermediates can be trapped by fluorinated ketones via 1,2-carbonyl addition to afford benzoin-type products. This discovery represents a rare example of nucleophilic carbenes reacting with ketones and delivers an efficient, user-friendly, and scalable process for accessing fluorinated tertiary alcohol derivatives driven only by light circumventing the use of exogenous catalysts or additives.
Collapse
Affiliation(s)
- Daniel L Priebbenow
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Rowan L Pilkington
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Kyle N Hearn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia.,CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| |
Collapse
|
23
|
Ma L, Yu Y, Xin L, Zhu L, Xia J, Ou P, Huang X. Visible Light Enabled Formal Cross Silyl Benzoin Reaction as an Access to α‐Hydroxyketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Pengcheng Ou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research Ministry of Education of China Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan 410081 People's Republic of China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| |
Collapse
|
24
|
Fan Z, Yi Y, Chen S, Xi C. Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide. Org Lett 2021; 23:2303-2307. [DOI: 10.1021/acs.orglett.1c00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengning Fan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yaping Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shenhao Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
25
|
Priebbenow DL. Silicon‐Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000279] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Daniel L. Priebbenow
- School of ChemistryThe University of Melbourne Parkville, Victoria Australia 3010
| |
Collapse
|