1
|
Paderni D, Voccia M, Macedi E, Formica M, Giorgi L, Caporaso L, Fusi V. A combined solid state, solution and DFT study of a dimethyl-cyclen-Pd(II) complex. Dalton Trans 2024; 53:14300-14314. [PMID: 39133309 DOI: 10.1039/d4dt01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A new palladium(II) complex containing the previously synthesized 4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane ligand maltonis was prepared and characterized both in solution and in the solid state. Hirshfeld surface and energy framework analyses were also performed. Because maltonis already showed antineoplastic activity, the complexation of Pd(II), chosen as an alternative to Pt(II), was investigated to study its possible biological activity. UV-vis and NMR studies confirmed the formation and stability of the complex in aqueous solution at physiological pH. X-ray diffraction data revealed a structure where the Pd(II) ion is lodged in the dimethyl-cyclen cavity, with maltol rings facing each other (closed shape) even if they are not involved in the coordination. DFT analysis was performed in order to understand the most stable shape of the complex. In view of evaluating its possible bioactive conformation, the DFT study suggested a slight energetic preference for the closed one. The resulting closed complex was stabilized in the X-ray structure by intermolecular interactions that replace the intramolecular interactions present in the optimized complex. According to the DFT calculated formation energies, notwithstanding its rarity, the Pd(II) complex of maltonis is the thermodynamically preferred one among analogous complexes containing different metal ions (Pt(II), Co(II), and Cu(II)). Finally, to study its possible biological activity, the interaction between the Pd(II) complex of maltonis and nucleosides was evaluated through NMR and DFT calculations, revealing a possible interaction with purines via the maltol moieties.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Maria Voccia
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Lucia Caporaso
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
2
|
Maier KB, Rust LN, Kupara CI, Woods M. Diastereoselective Synthesis of α-Aryl-Substituted LnDOTA Chelates from Achiral Starting Materials by Deracemization Under Mild Conditions. Chemistry 2023; 29:e202301887. [PMID: 37519104 DOI: 10.1002/chem.202301887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Substituted derivatives of the DOTA framework are of general interest to alter chelate properties and facilitate the conjugation of chelates to other molecular structures. However, the scope of substituents that can be introduced into the α-position has traditionally been limited by the availability of a suitable enantiopure starting materials to facilitate a stereoselective synthesis. Tetra-substituted DOTA derivatives with phenyl and benzoate substituents in the α-position have been prepared. Initial syntheses used enantiopure starting materials but did not afford enantiopure products. This indicates that the integrity of the stereocenters was not preserved during synthesis, despite the homo-chiral diastereoisomer being the major reaction product. The homochiral diastereoisomer could be produced as the major or sole reaction product when starting from racemic or even achiral materials. Deracemization was found to occur during chelation through the formation of an enolate stabilized by the aryl substituent. This general ability of aryl groups to enable deracemization greatly increases the range of substituents that can be introduced into DOTA-type ligands with diastereochemical selectivity.
Collapse
Affiliation(s)
- Karley B Maier
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Lauren N Rust
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Charlene I Kupara
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Mark Woods
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
- Advanced Imaging Research Center, Oregon Health and Science University, 1381 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
3
|
Salamone TA, Rutigliano L, Pennacchi B, Cerra S, Matassa R, Nottola S, Sciubba F, Battocchio C, Marsotto M, Del Giudice A, Chumakov A, Davydok A, Grigorian S, Canettieri G, Agostinelli E, Fratoddi I. Thiol functionalised gold nanoparticles loaded with methotrexate for cancer treatment: From synthesis to in vitro studies on neuroblastoma cell lines. J Colloid Interface Sci 2023; 649:264-278. [PMID: 37348346 DOI: 10.1016/j.jcis.2023.06.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
HYPOTHESIS Colloidal gold nanoparticles (AuNPs) functionalised with hydrophilic thiols can be used as drug delivery probes, thanks to their small size and hydrophilic character. AuNPs possess unique properties for their use in nanomedicine, especially in cancer treatment, as diagnostics and therapeutic tools. EXPERIMENTS Thiol functionalised AuNPs were synthesised and loaded with methotrexate (MTX). Spectroscopic and morphostructural characterisations evidenced the stability of the colloids upon interaction with MTX. Solid state (GISAXS, GIWAXS, FESEM, TEM, FTIR-ATR, XPS) and dispersed phase (UV-Vis, DLS, ζ-potential, NMR, SAXS) experiments allowed to understand structure-properties correlations. The nanoconjugate was tested in vitro (MTT assays) against two neuroblastoma cell lines: SNJKP and IMR5 with overexpressed n-Myc. FINDINGS Molar drug encapsulation efficiency was optimised to be >70%. A non-covalent interaction between the π system and the carboxylate moiety belonging to MTX and the charged aminic group of one of the thiols was found. The MTX loading slightly decreased the structural order of the system and increased the distance between the AuNPs. Free AuNPs showed no cytotoxicity whereas the AuNPs-MTX nanoconjugate had a more potent effect when compared to free MTX. The active role of AuNPs was evidenced by permeation studies: an improvement on penetration of the drug inside cells was evidenced.
Collapse
Affiliation(s)
- Tommaso A Salamone
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Lavinia Rutigliano
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Beatrice Pennacchi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Stefania Nottola
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Martina Marsotto
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | | | - Andrei Chumakov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Helmholtz Zentrum Hereon, Notkestr. 85, 22607 Hamburg, Germany
| | - Souren Grigorian
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute of Physics, University of Siegen, Walter-Flex-Strasse 3, D-57068 Siegen, Germany
| | - Gianluca Canettieri
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; International Polyamines Foundation "ETS-ONLUS", Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
The difference in the curative effects of 5-aminolevulinic acid nano-gold photodynamic therapy and 1550 nm erbium glass fractional laser therapy in severe rosacea. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
6
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
7
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Perry HL, Yoon IC, Chabloz NG, Molisso S, Stasiuk GJ, Botnar RM, Wilton-Ely JDET. Metallostar Assemblies Based on Dithiocarbamates for Use as MRI Contrast Agents. Inorg Chem 2020; 59:10813-10823. [PMID: 32677827 DOI: 10.1021/acs.inorgchem.0c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two different octadentate gadolinium chelates based on DO3A and DOTAGA chelates (hydration number q = 1) have been used to prepare a series of bi-, tri-, and tetrametallic d-f mixed-metal complexes. The piperazine-based dithiocarbamate linker ensures that rotation of the gadolinium chelates is restricted, leading to enhanced relaxivity (r1) values, which increase with the overall mass and number of gadolinium units. The r1 value (at 10 MHz, 25 °C) per gadolinium unit rises from 5.0 mM-1 s-1 for the Gd-DO3A-NH2 monogadolinium chelate to 9.2 mM-1 s-1 in a trigadolinium complex with a ruthenium(III) core. Using a 1.5 T clinical scanner operating at 63.87 MHz (25 °C), an 86% increase in the relaxivity per gadolinium unit is observed for this multimetallic compound compared to clinically approved Dotarem. The gadolinium complexes based on the DOTAGA chelate also performed well at 63.87 MHz, with a relaxivity value of 9.5 mM-1 s-1 per gadolinium unit being observed for the trigadolinium d-f mixed-metal complex with a ruthenium(III) core. The versatility of dithiocarbamate coordination chemistry thus provides access to a wide range of d-f hybrids with potential for use as high-performance MRI contrast agents.
Collapse
Affiliation(s)
- Hannah L Perry
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K.,School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, U.K
| | - Il-Chul Yoon
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| | - Nicolas G Chabloz
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| | - Susannah Molisso
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| | - Graeme J Stasiuk
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, U.K
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, U.K
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| |
Collapse
|
9
|
Perry HL, Botnar RM, Wilton-Ely JDET. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun (Camb) 2020; 56:4037-4046. [DOI: 10.1039/d0cc00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of recent progress in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics.
Collapse
Affiliation(s)
- Hannah L. Perry
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences
- King's College London
- London
- UK
| | - James D. E. T. Wilton-Ely
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| |
Collapse
|