1
|
Georges T, Ovens JS, Bryce DL. Electrostatic Surface Potentials and Chalcogen-Bonding Motifs of Substituted 2,1,3-Benzoselenadiazoles Probed via 77Se Solid-State NMR Spectroscopy. Chemistry 2024; 30:e202402254. [PMID: 38958873 DOI: 10.1002/chem.202402254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Chalcogen bonds (ChB) are moderately strong, directional, and specific non-covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ-holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self-complementary ChB networks of 2,1,3-benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ-holes on selenium are largely influenced by the electron-withdrawing character of these substituents. Structural analyses via X-ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6-dimethyl-2,1,3-benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid-state magic-angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self-complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ-holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
Collapse
Affiliation(s)
- Tristan Georges
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| | - Jeffrey S Ovens
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| |
Collapse
|
2
|
Bui AH, Fernando Pulle AD, Micallef AS, Lessard JJ, Tuten BT. Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules. Angew Chem Int Ed Engl 2024; 63:e202404474. [PMID: 38453652 DOI: 10.1002/anie.202404474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.
Collapse
Affiliation(s)
- Aaron H Bui
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anne D Fernando Pulle
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana, Champaign Urbana, Illinois, 61801, United States of America
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
3
|
Dukhnovsky EA, Novikov AS, Kubasov AS, Borisov AV, Sikaona ND, Kirichuk AA, Khrustalev VN, Kritchenkov AS, Tskhovrebov AG. Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se 2N 2 Chalcogen Bonding. Int J Mol Sci 2024; 25:3972. [PMID: 38612782 PMCID: PMC11011651 DOI: 10.3390/ijms25073972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis and structural characterization of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles with various counterions is reported herein, demonstrating a strategy for directed supramolecular dimerization in the solid state. The compounds were obtained through a recently discovered 1,3-dipolar cycloaddition reaction between nitriles and bifunctional 2-pyridylselenyl reagents, and their structures were confirmed by the X-ray crystallography. α-Haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles exclusively formed supramolecular dimers via four-center Se···N chalcogen bonding, supported by additional halogen bonding involving α-haloalkyl substituents. The introduction of halogens at the α-position of the substituent R in the selenadiazole core proved effective in promoting supramolecular dimerization, which was unaffected by variation of counterions. Additionally, the impact of cocrystallization with a classical halogen bond donor C6F3I3 on the supramolecular assembly was investigated. Non-covalent interactions were studied using density functional theory calculations and topological analysis of the electron density distribution, which indicated that all ChB, XB and HB interactions are purely non-covalent and attractive in nature. This study underscores the potential of halogen and chalcogen bonding in directing the self-assembly of functional supramolecular materials employing 1,2,4-selenadiazoles derived from recently discovered cycloaddition between nitriles and bifunctional 2-pyridylselenyl reagents.
Collapse
Affiliation(s)
- Evgeny A. Dukhnovsky
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, Moscow 119334, Russia
| | - Alexander V. Borisov
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, Nizhny Novgorod 603155, Russia
| | - Nkumbu Donovan Sikaona
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Anatoly A. Kirichuk
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119334, Russia
| | - Andreii S. Kritchenkov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Alexander G. Tskhovrebov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
4
|
Radiush EA, Wang H, Chulanova EA, Ponomareva YA, Li B, Wei QY, Salnikov GE, Petrakova SY, Semenov NA, Zibarev AV. Halide Complexes of 5,6-Dicyano-2,1,3-Benzoselenadiazole with 1 : 4 Stoichiometry: Cooperativity between Chalcogen and Hydrogen Bonding. Chempluschem 2023; 88:e202300523. [PMID: 37750466 DOI: 10.1002/cplu.202300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
The [M4 -Hal]- (M=the title compound; Hal=Cl, Br, and I) complexes were isolated in the form of salts of [Et4 N]+ cation and characterized by XRD, NMR, UV-Vis, DFT, QTAIM, EDD, and EDA. Their stoichiometry is caused by a cooperative interplay of σ-hole-driven chalcogen (ChB) and hydrogen (HB) bondings. In the crystal, [M4 -Hal]- are connected by the π-hole-driven ChB; overall, each [Hal]- is six-coordinated. In the ChB, the electrostatic interaction dominates over orbital and dispersion interactions. In UV-Vis spectra of the M+[Hal]- solutions, ChB-typical and [Hal]- -dependent charge-transfer bands are present; they reflect orbital interactions and allow identification of the individual [Hal]- . However, the structural situation in the solutions is not entirely clear. Particularly, the UV-Vis spectra of the solutions are different from the solid-state spectra of the [Et4 N]+ [M4 -Hal]- ; very tentatively, species in the solutions are assigned [M-Hal]- . It is supposed that the formation of the [M4 -Hal]- proceeds during the crystallization of the [Et4 N]+ [M4 -Hal]- . Overall, M can be considered as a chromogenic receptor and prototype sensor of [Hal]- . The findings are also useful for crystal engineering and supramolecular chemistry.
Collapse
Affiliation(s)
- Ekaterina A Radiush
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Elena A Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Current address: Institute for Applied Physics, University of Tübingen, 72076, Tübingen, Germany
| | - Yana A Ponomareva
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Department of Natural Sciences, National Research University - Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Bin Li
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Qiao Yu Wei
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Georgy E Salnikov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Svetlana Yu Petrakova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Nikolay A Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Andrey V Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Aliyeva VA, Gurbanov AV, Mahmoud AG, Gomila RM, Frontera A, Mahmudov KT, Pombeiro AJL. Chalcogen bonding in copper(II)-mediated synthesis. Faraday Discuss 2023; 244:77-95. [PMID: 37089087 DOI: 10.1039/d2fd00160h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chalcogen bond (ChB) is a noncovalent attraction between an electrophilic chalcogen atom and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity: R-Ch⋯Nu (Ch = O, S, Se or Te; R = substituents; Nu = nucleophile). ChB is comparable to the hydrogen and halogen bonds both in terms of strengths and directionality. However, in contrast to the monovalent halogen atoms, usually the divalent or tetravalent chalcogen atoms are able to display more than one electrophilic centre (on account of the existence of two or three species bonded to the chalcogen atom), which provides an additional opportunity in the use of this type of noncovalent binding in synthetic operations. In this work, the role of ChB at the secondary coordination sphere of metal complexes through copper(II)-mediated activation of dioxygen or of one nitrile group of a 1,2,5-selenadiazole-3,4-dicarbonitrile ligand to form a carbimidate or an imino-carboxylic acid is demonstrated. DFT calculations allowed evaluation of the strength of the ChBs and proved their relevant structure directing role in the solid state architectures. The effect of metal-coordination on the σ-hole opposite to the coordinated SeO bond has been analysed using molecular electrostatic potential (MEP) surfaces and explains the greater ability of the coordinated selenoxide derivatives to form strong ChBs.
Collapse
Affiliation(s)
- Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km7.5, Palma, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km7.5, Palma, Baleares, Spain.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
6
|
Brammer L, Peuronen A, Roseveare TM. Halogen bonds, chalcogen bonds, pnictogen bonds, tetrel bonds and other σ-hole interactions: a snapshot of current progress. Acta Crystallogr C Struct Chem 2023; 79:204-216. [PMID: 37212787 PMCID: PMC10240169 DOI: 10.1107/s2053229623004072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023] Open
Abstract
We report here on the status of research on halogen bonds and other σ-hole interactions involving p-block elements in Lewis acidic roles, such as chalcogen bonds, pnictogen bonds and tetrel bonds. A brief overview of the available literature in this area is provided via a survey of the many review articles that address this field. Our focus has been to collect together most review articles published since 2013 to provide an easy entry into the extensive literature in this area. A snapshot of current research in the area is provided by an introduction to the virtual special issue compiled in this journal, comprising 11 articles and entitled `Halogen, chalcogen, pnictogen and tetrel bonds: structural chemistry and beyond.'
Collapse
Affiliation(s)
- Lee Brammer
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Anssi Peuronen
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Thomas M. Roseveare
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
7
|
Scheiner S. Competition Between the Two σ-Holes in the Formation of a Chalcogen Bond. Chemphyschem 2023; 24:e202200936. [PMID: 36744997 DOI: 10.1002/cphc.202200936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chalcogen atom Y contains two separate σ-holes when in a R1 YR2 molecular bonding pattern. Quantum chemical calculations consider competition between these two σ-holes to engage in a chalcogen bond (ChB) with a NH3 base. R groups considered include F, Br, I, and tert-butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron-withdrawing substituents R1 and R2 act cooperatively to deepen the two σ-holes, but the deeper of the two holes consistently lies opposite to the more electron-withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti-cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ-holes are unable to form a ChB at all when a base occupies the other site.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, 84322-0300, Logan, Utah, USA
| |
Collapse
|
8
|
Sapronov AA, Artemjev AA, Burkin GM, Khrustalev VN, Kubasov AS, Nenajdenko VG, Gomila RM, Frontera A, Kritchenkov AS, Tskhovrebov AG. Robust Supramolecular Dimers Derived from Benzylic-Substituted 1,2,4-Selenodiazolium Salts Featuring Selenium⋯π Chalcogen Bonding. Int J Mol Sci 2022; 23:ijms232314973. [PMID: 36499302 PMCID: PMC9740427 DOI: 10.3390/ijms232314973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
The series of benzylic-substituted 1,2,4-selenodiazolium salts were prepared via cyclization reaction between 2-pyridylselenyl chlorides and nitriles and fully characterized. Substitution of the Cl anion by weakly binding anions promoted the formation supramolecular dimers featuring four center Se2N2 chalcogen bonding and two antiparallel selenium⋯π interactions. Chalcogen bonding interactions were studied using density functional theory calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of atoms-in-molecules (QTAIM), and the noncovalent interaction (NCI) plot. The investigations revealed fundamental role of the selenium⋯π contacts that are stronger than the Se⋯N interactions in supramolecular dimers. Importantly, described herein, the benzylic substitution approach can be utilized for reliable supramolecular dimerization of selenodiazolium cations in the solid state, which can be employed in supramolecular engineering.
Collapse
Affiliation(s)
- Alexander A. Sapronov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alexey A. Artemjev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Gleb M. Burkin
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119334 Moscow, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Andreii S. Kritchenkov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| | - Alexander G. Tskhovrebov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Li B, Wang X, Wang H, Song Q, Ni Y, Wang H, Wang X. Influence of the anion base X (X=F−, Cl−, Br−, NO3− and SO42−) on the formation of Chalcogen bonds in Chalcogenodiazoles C4N4Ch (Ch=S, Se and Te). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Nag T, Ovens JS, Bryce DL. 77Se and 125Te solid-state NMR and X-ray diffraction structural study of chalcogen-bonded 3,4-dicyano-1,2,5-chalcogenodiazole cocrystals. Acta Crystallogr C Struct Chem 2022; 78:517-523. [PMID: 36196784 DOI: 10.1107/s2053229622008518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Three novel chalcogen-bonded cocrystals featuring 3,4-dicyano-1,2,5-selenodiazole (C4N4Se) or 3,4-dicyano-1,2,5-tellurodiazole (C4N4Te) as chalcogen-bond donors and hydroquinone (C6H6O2), tetraphenylphosphonium chloride (C24H20P+·Cl-) or tetraethylphosphonium chloride (C8H20P+·Cl-) as chalcogen-bond acceptors have been prepared and characterized by single-crystal X-ray diffraction (XRD), powder X-ray diffraction and 77Se/125Te magic-angle spinning solid-state NMR spectroscopy. The single-crystal XRD results show that the chalcogenodiazole molecules interact with the electron donors through two σ-holes on each of the chalcogen atoms, which results in highly directional and moderately strong chalcogen bonds. Powder XRD confirms that the crystalline phases are preserved upon moderate grinding of the samples for solid-state NMR experiments. Measurement of 77Se and 125Te chemical shift tensors via magic-angle spinning solid-state NMR spectroscopy confirms the number of magnetically unique chalcogen sites in each asymmetric unit and reveals the impact of chalcogen-bond formation on the local electronic structure. These NMR data are further assessed in the context of analogous data for a wider range of crystalline chalcogen-bonded systems.
Collapse
Affiliation(s)
- Tamali Nag
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S Ovens
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier J, Costa RD, Bonifazi D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew Chem Int Ed Engl 2022; 61:e202202137. [PMID: 35274798 PMCID: PMC9544418 DOI: 10.1002/anie.202202137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).
Collapse
Affiliation(s)
- Deborah Romito
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Elisa Fresta
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Luca M. Cavinato
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Hanspeter Kählig
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Heinz Amenitsch
- Graz University of TechnologyInstitute for Inorganic ChemistryStremayergasse 9/V8010GrazAustria
| | - Laura Caputo
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Christophe Charlier
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Rubén D. Costa
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Davide Bonifazi
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
12
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
13
|
Zhang L, Zeng Y, Li X, Zhang X. Noncovalent interactions between benzochalcogenadiazoles and nitrogen bases. J Mol Model 2022; 28:248. [PMID: 35932432 DOI: 10.1007/s00894-022-05247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
A theoretical study has been carried out on the intermolecular interactions between tetrafluoro-benzochalcogenadiazoles (chalcogen = S, Se, Te) and a series of nitrogen bases (FCN, ClCN, NP, trans-N2H2, pyridine, pyrazole, imidazole) at the B97-D3/def2-TZVP level, to obtain a better insight into the nature and strength of Ch···N chalcogen bond and secondary interaction in the binary and 1:2 ternary complexes. The dispersion force plays a prominent role on the stability of the sulfur complexes, and the electrostatic effect enhanced for the heavier chalcogen complexes. Most of intermolecular bonds display the characters of closed-shell and noncovalent interaction. For the complexes involving pyridine and imidazole, chalcogen bond is stronger than hydrogen bond, while the strength of chalcogen bond is equivalent to the secondary interaction for other complexes. With the addition of nitrogen base in the 1:2 complexes, chalcogen bond is weakened, while the secondary interaction remains unchanged. In the 1:2 complexes formed by pyridine and imidazole, stronger chalcogen bond results in larger negative cooperativity than that of other complexes.
Collapse
Affiliation(s)
- Lili Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
14
|
|
15
|
Abstract
The chalcogen Y atom in the aromatic ring of thiophene and its derivatives YC4H4 (Y = S, Se, Te) can engage in a number of different interactions with another such unit within the homodimer. Quantum calculations show that the two rings can be oriented perpendicular to one another in a T-shaped dimer in which the Y atom accepts electron density from the π-system of the other unit in a Y···π chalcogen bond (ChB). This geometry best takes advantage of attractions between the electrostatic potentials surrounding the two monomers. There are two other geometries in which the two Y atoms engage in a ChB with one another. However, instead of a simple interaction between a σ-hole on one Y and the lone pair of its neighbor, the interaction is better described as a pair of symmetrically equivalent Y···Y interactions, in which charge is transferred in both directions simultaneously, thereby effectively doubling the strength of the bond. These geometries differ from what might be expected based simply on the juxtaposition of the electrostatic potentials of the two monomers.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
16
|
Sakai N, Assies L, Matile S. G‐Quartets, 4‐Way Junctions and Triple Helices but Not DNA Duplexes: Planarization of Twisted Push‐Pull Flipper Probes by Surface Recognition Rather Than Physical Compression. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naomi Sakai
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Lea Assies
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Stefan Matile
- University of Geneva Department of Organic Chemistry Quai Ernest-Ansermet 30 CH-1211 Geneva SWITZERLAND
| |
Collapse
|
17
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
18
|
Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Te⋯N secondary-bonding interactions in tellurium crystals: Supramolecular aggregation patterns and a comparison with their lighter congeners. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier JC, Costa R, Bonifazi D. Supramolecular Chalcogen‐Bonded Semiconducting Nanoribbons at work in Lighting Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deborah Romito
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 Vienna AUSTRIA
| | - Elisa Fresta
- Technical University Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Luca Maria Cavinato
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Hanspeter Kählig
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 vienna AUSTRIA
| | - Heinz Amenitsch
- Graz University of Technology: Technische Universitat Graz Institute for Inorganic Chemistry Stremayergasse 9/V 8010 Graz AUSTRIA
| | - Laura Caputo
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Yusheng Chen
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Paolo Samorì
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Jean-Christophe Charlier
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Rubén Costa
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Davide Bonifazi
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna AUSTRIA
| |
Collapse
|
21
|
Scheiner S. Principles Guiding the Square Bonding Motif Containing a Pair of Chalcogen Bonds between Chalcogenadiazoles. J Phys Chem A 2022; 126:1194-1203. [PMID: 35143197 DOI: 10.1021/acs.jpca.1c10818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bonding motif adopted by a dimer of chalcogenadiazole molecules is characterized by a pair of equivalent Ch···N chalcogen bonds. Quantum calculations show that the interaction energy is substantial, varying between 4 kcal/mol for Ch = S and 17 kcal/mol for Te. The interaction is cooperative in that the total bond strength is greater than either chalcogen bond individually. Neither the addition of a phenyl ring nor the addition of a pair of cyano substituents to the diazole ring has much influence on this binding. Removal of one N from the diazole weakens the binding, and addition of two nitrogens has little effect. The largest perturbation arises with three N atoms in each ring, for which the binding energy increases by some 25%. The ring size plays a minor role in most cases, although a near doubling of bond strength occurs if there are two N atoms present on a four-membered ring.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
22
|
Kumar V, Triglav M, Morin VM, Bryce DL. Predictability of Chalcogen-Bond-Driven Crystal Engineering: An X-ray Diffraction and Selenium-77 Solid-State NMR Investigation of Benzylic Selenocyanate Cocrystals. ACS ORGANIC & INORGANIC AU 2022; 2:252-260. [PMID: 36855468 PMCID: PMC9954200 DOI: 10.1021/acsorginorgau.1c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a series of new chalcogen-bonded cocrystals featuring 1,2-bis(selenocyanatomethyl)benzene (DSN) and 1,2,4,5-tetrakis(selenocyanatomethyl)-benzene (TSN) as the donor moieties and a variety of Lewis bases such as onium halides, N-oxides, and pyridine-containing heterocycles as the acceptors. Single-crystal X-ray diffraction demonstrates that, in every case, the selenocyanates consistently interact with the acceptor molecules through strong and directional Se···X chalcogen-bonds (ChBs) (X = halides, oxygen, and nitrogen). 77Se solid-state nuclear magnetic resonance spectroscopy was applied to measure selenium chemical shift tensor magnitudes and to explore potential correlations between these tensor elements and the local ChB geometry. In every case, the isotropic 77Se chemical shift decreases, and the chemical shift tensor span increases upon cocrystallization of DSN with the various ChB acceptors. This work contributes to a growing body of knowledge concerning the predictability and robustness of chalcogen bonds in crystal engineering as well as the NMR response to the establishment of chalcogen bonds. In particular, among the systems studied here, highly linear chalcogen bonds are formed exclusively at the stronger σ-hole of each and every selenium atom regardless of the size, charge, or denticity of the electron donor moiety.
Collapse
|
23
|
Exploring Supramolecular Assembly Space of Cationic 1,2,4-Selenodiazoles: Effect of the Substituent at the Carbon Atom and Anions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031029. [PMID: 35164294 PMCID: PMC8839610 DOI: 10.3390/molecules27031029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
Chalcogenodiazoles have been intensively studied in recent years in the context of their supramolecular chemistry. In contrast, the newly discovered cationic 1,2,4-selenodiazole supramolecular building blocks, which can be obtained via coupling between 2-pyridylselenyl halides and nitriles, are virtually unexplored. A significant advantage of the latter is their facile structural tunability via the variation of nitriles, which could allow a fine tuning of their self-assembly in the solid state. Here, we explore the influence of the substituent (which derives from the nitrile) and counterions on the supramolecular assembly of cationic 1,2,4-selenodiazoles via chalcogen bonding.
Collapse
|
24
|
Radiush EA, Pritchina EA, Chulanova EA, Dmitriev AA, Bagryanskaya IY, Slawin AMZ, Woollins JD, Gritsan NP, Zibarev AV, Semenov NA. Chalcogen-bonded donor–acceptor complexes of 5,6-dicyano[1,2,5]selenadiazolo[3,4- b]pyrazine with halide ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With halides X− (X = Cl, Br, I) 5,6-dicyano-[1,2,5]selenadiazolo[3,4-b]pyrazine 1 forms chalcogen-bonded complexes [1–X]− structurally defined by XRD. UV/Vis spectra of [1–X]− feature red-shifted charge-transfer bands in the Vis part.
Collapse
Affiliation(s)
- Ekaterina A. Radiush
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Pritchina
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey A. Dmitriev
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - J. Derek Woollins
- School of Chemistry, University of St. Andrews, St Andrews, Fife KY16 9ST, UK
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nina P. Gritsan
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolay A. Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Torubaev YV, Rozhkov AV, Skabitsky IV, Gomila RM, Frontera A, Kukushkin VY. Heterovalent chalcogen bonding: supramolecular assembly driven by the occurrence of a tellurium( ii)⋯Ch( i) (Ch = S, Se, Te) linkage. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The revealed heterovalent TeII⋯ChI (Ch = S, Se, Te) chalcogen bonding was used for targeted noncovalent integration of two Ch centers in different oxidation states.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Moscow, 119991, Russian Federation
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anton V. Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Ivan V. Skabitsky
- N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Rosa M. Gomila
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Baleares, Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
26
|
Assies L, García-Calvo J, Piazzolla F, Sanchez S, Kato T, Reymond L, Goujon A, Colom A, López-Andarias J, Straková K, Mahecic D, Mercier V, Riggi M, Jiménez-Rojo N, Roffay C, Licari G, Tsemperouli M, Neuhaus F, Fürstenberg A, Vauthey E, Hoogendoorn S, Gonzalez-Gaitan M, Zumbuehl A, Sugihara K, Gruenberg J, Riezman H, Loewith R, Manley S, Roux A, Winssinger N, Sakai N, Pitsch S, Matile S. Flipper Probes for the Community. Chimia (Aarau) 2021; 75:1004-1011. [PMID: 34920768 DOI: 10.2533/chimia.2021.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.
Collapse
Affiliation(s)
- Lea Assies
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - José García-Calvo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Francesca Piazzolla
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Samantha Sanchez
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Takehiro Kato
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Luc Reymond
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Antoine Goujon
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Adai Colom
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Javier López-Andarias
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Karolína Straková
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Dora Mahecic
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Vincent Mercier
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Margot Riggi
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva; Department of Molecular Biology, University of Geneva
| | - Noemi Jiménez-Rojo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Chloé Roffay
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | | | - Maria Tsemperouli
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Frederik Neuhaus
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva; Department of Inorganic and Analytical Chemistry, University of Geneva
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva
| | - Sascha Hoogendoorn
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Andreas Zumbuehl
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Kaori Sugihara
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Physical Chemistry, University of Geneva
| | - Jean Gruenberg
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Robbie Loewith
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Molecular Biology, University of Geneva
| | - Suliana Manley
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Aurelien Roux
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Stefan Pitsch
- Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland;,
| |
Collapse
|
27
|
Ho PC, Tomassetti V, Britten JF, Vargas-Baca I. Iso-Tellurazolium -N-Phenoxides: A Family of Te···O Chalcogen-Bonding Supramolecular Building Blocks. Inorg Chem 2021; 60:16726-16733. [PMID: 34672560 DOI: 10.1021/acs.inorgchem.1c02585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formal substitution of the oxygen atom of an iso-tellurazole N-oxide with deprotonated (ortho, meta, and para)-hydroxyphenyl groups generated molecules that readily aggregate through Te···O chalcogen bonding (ChB) interactions. The molecules undergo autoassociation in solution, as shown by variable temperature (VT) 1H NMR experiments and paralleling the behavior of iso-tellurazole N-oxides. Judicious adjustment of crystallization conditions enabled the isolation of either polymeric or macrocyclic aggregates. Among the latter, the ortho compound assembled a calixarene-like trimer, while the para isomer built a macrocyclic tetramer akin to a molecular square. The Te···O ChB distances in these structures range from 2.13 to 2.17 Å, comparable to those in the structures of iso-tellurazole N-oxides. DFT calculations estimate that the corresponding Te···O ChB energies are between -122 and -195 kJ mol-1 in model dimers and suggest that macrocyclic aggregation enhances these interactions.
Collapse
Affiliation(s)
- Peter C Ho
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Valerie Tomassetti
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - James F Britten
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Ignacio Vargas-Baca
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
28
|
Tzeli D, Petsalakis ID, Theodorakopoulos G, Rahman FU, Yu Y, Rebek J. The role of electric field, peripheral chains, and magnetic effects on significant 1H upfield shifts of the encapsulated molecules in chalcogen-bonded capsules. Phys Chem Chem Phys 2021; 23:19647-19658. [PMID: 34524297 DOI: 10.1039/d1cp02277f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chalcogen-bonded homo-cavitand and hetero-cavitand AY+AY' capsules (Y, Y' = Se, Te), as well as their encapsulated complexes with one or two guest molecules have been studied theoretically via density functional theory (DFT), while the 1H NMR spectra of the homo-cavitand encapsulated complexes (in ASe+ASe) have been measured experimentally. There is excellent agreement between theoretical and experimental spectra. In all cases, we found significant 1H upfield shifts which are more intense in the ASe+ASe cage compared to the ATe+ATe and ASe+ATe cages. The non-uniform electron distribution which gives rise to an inherent electric field and a non-zero electric dipole moment of the encapsulated complexes, the induced electric field effects, the magnetic anisotropy which is enhanced due to the polarizability of chalcogen atoms, and the peripheral chains, which are responsible for the solubility of the cages, increase the upfield shifts of 1H of the encapsulated molecules; the peripheral chains lead to an increase of the upfield shifts by up to 1.8 ppm for H of the rim and up to 1.2 ppm for the terminal H in the interior of the cage. Hence, substantial 1H upfield chemical shifts of the guests in these capsules are consequences of (i) the enhanced aromaticity of the walls of the capsules due to the polarizability of chalcogen atoms, (ii) the induced and inherent electric field effects, and (iii) the peripheral chains.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 71, Greece. .,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 116 35, Greece.
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 116 35, Greece.
| | - Giannoula Theodorakopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 116 35, Greece.
| | - Faiz-Ur Rahman
- Inner Mongolia Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. China
| | - Yang Yu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. China
| | - Julius Rebek
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. China.,Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Tiekink ER. Supramolecular aggregation patterns featuring Se⋯N secondary-bonding interactions in mono-nuclear selenium compounds: A comparison with their congeners. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Ho PC, Lomax J, Tomassetti V, Britten JF, Vargas-Baca I. Competing Effects of Chlorination on the Strength of Te⋅⋅⋅O Chalcogen Bonds Select the Structure of Mixed Supramolecular Macrocyclic Aggregates of Iso-Tellurazole N-Oxides. Chemistry 2021; 27:10849-10853. [PMID: 34018275 DOI: 10.1002/chem.202101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Chlorination of 3-methyl-5-phenyl-1,2-tellurazole-2-oxide yielded the λ4 Te dichloro derivative. Its crystal structure demonstrates that the heterocycle retains its ability to autoassociate by chalcogen bonding (ChB) forming macrocyclic tetramers. The corresponding Te⋅⋅⋅O ChB distances are 2.062 Å, the shortest observed to date in aggregates of this type. DFT-D3 calculations indicate that while the halogenated molecule is stronger as a ChB donor it also is a weaker ChB acceptor; the overall effect is that the ChBs in the chlorinated homotetramer are not significantly stronger. However, partial halogenation or scrambling selectively yield the 2 : 2 heterotetramer with alternating λ4 Te and λ2 Te centers, which calculations identified as the thermodynamically preferred arrangement.
Collapse
Affiliation(s)
- Peter C Ho
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4 M1, Hamilton, Ontario, Canada
| | - Justin Lomax
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4 M1, Hamilton, Ontario, Canada
| | - Valerie Tomassetti
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4 M1, Hamilton, Ontario, Canada
| | - James F Britten
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4 M1, Hamilton, Ontario, Canada
| | - Ignacio Vargas-Baca
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4 M1, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Chalcogen Bonding in Co-Crystals: Activation through 1,4-Perfluorophenylene vs. 4,4'-Perfluorobiphenylene Cores. Molecules 2021; 26:molecules26134050. [PMID: 34279389 PMCID: PMC8271382 DOI: 10.3390/molecules26134050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of alkylseleno/alkyltelluroacetylenes such as bis(selenomethylethynyl)-perfluorobenzene (4F-Se) to act as a ditopic chalcogen bond (ChB) donor in co-crystals with ditopic Lewis bases such as 4,4′-bipyridine is extended here to the octafluorobiphenylene analog, 4,4′-bis(selenomethylethynyl)-perfluorobiphenyl (8F-Se), with the more electron-rich 4,4′-bipyridylethane (bpe), showing in the 1:1 (8F-Se)•(bpe) co-crystal a shorter and more linear C−Se•••N ChB interaction than in (4F-Se)•(bpe), with Se•••N distances down to 2.958(2) Å at 150 K, i.e., a reduction ratio of 0.85 vs. the van der Waals contact distance.
Collapse
|
32
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
33
|
Zierkiewicz W, Michalczyk M, Scheiner S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules 2021; 26:1740. [PMID: 33804617 PMCID: PMC8003638 DOI: 10.3390/molecules26061740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA;
| |
Collapse
|
34
|
Tiekink ERT. Zero-, one-, two- and three-dimensional supramolecular architectures sustained by Se …O chalcogen bonding: A crystallographic survey. Coord Chem Rev 2021; 427:213586. [PMID: 33100367 PMCID: PMC7568495 DOI: 10.1016/j.ccr.2020.213586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen bonding interactions. These secondary bonding interactions are found to operate independently of complementary intermolecular interactions in about 13% of the structures they can potentially form. This number rises significantly when more specific interactions are considered, e.g. Se…O(carbonyl) interactions occur in 50% of cases where they can potentially form. In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) interactions are one-dimensional architectures, with the next most prominent being zero-dimensional assemblies, at 30%.
Collapse
Affiliation(s)
- Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, 5 Jalan Universiti, Sunway University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
35
|
Michalczyk M, Malik M, Zierkiewicz W, Scheiner S. Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. J Phys Chem A 2021; 125:657-668. [PMID: 33423496 DOI: 10.1021/acs.jpca.0c10814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
36
|
Beau M, Lee S, Kim S, Han WS, Jeannin O, Fourmigué M, Aubert E, Espinosa E, Jeon IR. Strong σ-Hole Activation on Icosahedral Carborane Derivatives for a Directional Halide Recognition. Angew Chem Int Ed Engl 2021; 60:366-370. [PMID: 32926491 DOI: 10.1002/anie.202010462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Crystal engineering based on σ-hole interactions is an emerging approach for realization of new materials with higher complexity. Neutral inorganic clusters derived from 1,2-dicarba-closo-dodecaborane, substituted with -SeMe, -TeMe, and -I moieties on both skeletal carbon vertices are experimentally demonstrated herein as outstanding chalcogen- and halogen-bond donors. In particular, these new molecules strongly interact with halide anions in the solid-state. The halide ions are coordinated by one or two donor groups (μ1 - and μ2 -coordinations), to stabilize a discrete monomer or dimer motifs to 1D supramolecular zig-zag chains. Crucially, the observed chalcogen bond and halogen bond interactions feature remarkably short distances and high directionality. Electrostatic potential calculations further demonstrate the efficiency of the carborane derivatives, with Vs,max being similar or even superior to that of reference organic halogen-bond donors, such as iodopentafluorobenzene.
Collapse
Affiliation(s)
- Maxime Beau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Sunhee Lee
- Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Sooyeon Kim
- Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Won-Sik Han
- Department of Chemistry, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Emmanuel Aubert
- Laboratoire CRM2, UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Enrique Espinosa
- Laboratoire CRM2, UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Ie-Rang Jeon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| |
Collapse
|
37
|
Beau M, Lee S, Kim S, Han W, Jeannin O, Fourmigué M, Aubert E, Espinosa E, Jeon I. Strong
σ
‐Hole Activation on Icosahedral Carborane Derivatives for a Directional Halide Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxime Beau
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) Campus de Beaulieu 35000 Rennes France
| | - Sunhee Lee
- Department of Chemistry Seoul Women's University Seoul 01797 Republic of Korea
| | - Sooyeon Kim
- Department of Chemistry Seoul Women's University Seoul 01797 Republic of Korea
| | - Won‐Sik Han
- Department of Chemistry Seoul Women's University Seoul 01797 Republic of Korea
| | - Olivier Jeannin
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) Campus de Beaulieu 35000 Rennes France
| | - Marc Fourmigué
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) Campus de Beaulieu 35000 Rennes France
| | - Emmanuel Aubert
- Laboratoire CRM2 UMR CNRS 7036 Institut Jean Barriol Université de Lorraine BP 70239, 54506 Vandoeuvre-lès-Nancy France
| | - Enrique Espinosa
- Laboratoire CRM2 UMR CNRS 7036 Institut Jean Barriol Université de Lorraine BP 70239, 54506 Vandoeuvre-lès-Nancy France
| | - Ie‐Rang Jeon
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) Campus de Beaulieu 35000 Rennes France
| |
Collapse
|
38
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
39
|
Huynh HT, Jeannin O, Aubert E, Espinosa E, Fourmigué M. Chalcogen bonding interactions in chelating, chiral bis(selenocyanates). NEW J CHEM 2021. [DOI: 10.1039/d0nj05293k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both anti (racemic mixture) and syn (meso) forms of a chiral, chelating chalcogen bond (ChB) donor interact with halides through short Se⋯X− directional interactions.
Collapse
Affiliation(s)
- Huu-Tri Huynh
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Olivier Jeannin
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | | | | | - Marc Fourmigué
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
40
|
Chernysheva MV, Haukka M. The S ⋅⋅⋅ Hal and Se ⋅⋅⋅ Hal chalcogen bonding in a series of thiourea, selenourea and their derivatives. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Kolb S, Oliver GA, Werz DB. Chemistry Evolves, Terms Evolve, but Phenomena Do Not Evolve: From Chalcogen-Chalcogen Interactions to Chalcogen Bonding. Angew Chem Int Ed Engl 2020; 59:22306-22310. [PMID: 32969111 DOI: 10.1002/anie.202007314] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 11/08/2022]
Abstract
Chalcogen bonding is important in numerous aspects of chemistry, both in the solid state and in solution. Surveying the literature, it becomes clear that during its rebranding from chalcogen-chalcogen interactions, some parts of the community have somewhat neglected to recall its discovery and the initial studies referring to it in its previous guise. In this Viewpoint, we trace the path of research into this phenomenon, from its discovery, through its renaming, and to some of the varied and interesting chemistry it has led to so far, ranging from crystal engineering through supramolecular assembly to modern catalysis.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
42
|
Kolb S, Oliver GA, Werz DB. Chemie und Begriffe entwickeln sich, aber Phänomene nicht: Von Chalkogen‐Chalkogen‐Wechselwirkungen zu “Chalcogen Bonding”. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Gwyndaf A. Oliver
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Daniel B. Werz
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| |
Collapse
|
43
|
Paraja M, Gini A, Sakai N, Matile S. Pnictogen‐Bonding Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms in Polyether Cascade Cyclizations. Chemistry 2020; 26:15471-15476. [DOI: 10.1002/chem.202003426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Andrea Gini
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
44
|
Beau M, Jeannin O, Lee S, Barrière F, Fourmigué M, Jeon IR. Activating both Halogen and Chalcogen Bonding Interactions in Cation Radical Salts of Iodinated Tetrathiafulavalene Derivatives. Chempluschem 2020; 85:2136-2142. [PMID: 32856428 DOI: 10.1002/cplu.202000500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Indexed: 11/10/2022]
Abstract
Halogen bonding (XB) interactions are investigated in cation radical salts of bis(methylthio)-5,5'-diiodotetrathiafulvalene (1). Electrocrystallization of 1 in the presence of Bu4 NCl affords a 1 : 1 salt formulated as (E-1)Cl. Particularly strong I⋅⋅⋅Cl- XB interactions are observed around the Cl- anion with the distances at 78 % the sum of the van der Waals radii, a consequence of the XB charge activation in the cation radical. Moreover, the Cl- environment is complemented by two extra S⋅⋅⋅Cl- chalcogen bonding (ChB) interactions, an original feature among reported halide salts of TTF derivatives. Electrostatic potential calculations on the cation radical further demonstrate the efficient activation of the S atoms of the 1,3-dithiole rings (Vs,max =87.2 kcal/mol), as strong as with the iodine atoms (Vs,max =87.9 kcal/mol). The radical cations form weakly dimerized stacks, as confirmed by the variable-temperature magnetic susceptibility and the weak conductivity (4.8×10-5 S cm-1 ).
Collapse
Affiliation(s)
- Maxime Beau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Sunhee Lee
- Department of Chemistry, Seoul Women's University, Seoul, 01797 (Republic of, Korea
| | - Frédéric Barrière
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Ie-Rang Jeon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| |
Collapse
|
45
|
Gini A, Paraja M, Galmés B, Besnard C, Poblador-Bahamonde AI, Sakai N, Frontera A, Matile S. Pnictogen-bonding catalysis: brevetoxin-type polyether cyclizations. Chem Sci 2020; 11:7086-7091. [PMID: 33250977 PMCID: PMC7690316 DOI: 10.1039/d0sc02551h] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
This study marks chemical space available for pnictogen-bonding catalysis, and demonstrates that reactivity accessible in this space is unique.
Pnictogen-bond donors are attractive for use in catalysis because of deep σ holes, high multivalency, rich hypervalency, and chiral binding pockets. We here report natural product inspired epoxide-opening polyether cyclizations catalyzed by fluoroarylated Sb(v) > Sb(iii) > Bi > Sn > Ge. The distinctive characteristic found for pnictogen-bonding catalysis is the breaking of the Baldwin rules, that is selective endo cyclization into the trans-fused ladder oligomers known from the brevetoxins. Moreover, tris(3,4,5-trifluorophenyl)stibines and their hypervalent stiborane catecholates afford different anti-Baldwin stereoselectivity. Lewis (SbCl3), Brønsted (AcOH) and π acids fail to provide similar access to these forbidden rings. Like hydrogen-bonding catalysis differs from Brønsted acid catalysis, pnictogen-bonding catalysis thus emerges as the supramolecular counterpart of covalent Lewis acid catalysis.
Collapse
Affiliation(s)
- Andrea Gini
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Miguel Paraja
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Bartomeu Galmés
- Department de Química , Universitat de les Illes Balears , Palma de Mallorca , Spain
| | - Celine Besnard
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Amalia I Poblador-Bahamonde
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Antonio Frontera
- Department de Química , Universitat de les Illes Balears , Palma de Mallorca , Spain
| | - Stefan Matile
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| |
Collapse
|
46
|
Abstract
A central pnicogen Z atom (Z = Sb, As) is covalently attached to the O atom of three -O(CH2)nX chains where X represents either an aldehyde or amine group. The chain can fold around so that the basic X group can engage in a noncovalent pnicogen bond with the central Z. The formation of up to three pnicogen bonds is energetically favored. The amine appears to engage in stronger pnicogen bonds than does the aldehyde, and bonds to Sb are favored over As, but there is little dependence on the length of the chain. The formation of each successive pnicogen bond reduces the magnitude of the σ-holes surrounding the Z atom, which tends to weaken the attraction for the basic end of the chain.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
47
|
Romito D, Biot N, Babudri F, Bonifazi D. Non-covalent bridging of bithiophenes through chalcogen bonding grips. NEW J CHEM 2020. [DOI: 10.1039/c9nj06202e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, chalcogen functionalized dithiophenes, equipped on both extremities with chalcogen-bonding recognition heterocycles, have been prepared following two synthetic pathways.
Collapse
Affiliation(s)
| | - Nicolas Biot
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Francesco Babudri
- Dipartimento di Chimica
- Università degli Studi Aldo Moro di Bari
- 70126 Bari
- Italy
| | | |
Collapse
|