1
|
Malacarne F, Grecchi S, Niamlaem M, Bonczak B, Salinas G, Arnaboldi S. Unconventional approaches for chiral resolution. Anal Bioanal Chem 2024; 416:3677-3685. [PMID: 38755462 PMCID: PMC11180637 DOI: 10.1007/s00216-024-05329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Chirality is a fundamental and ubiquitous property of nature involved in multiple fields of science. In particular, the possible resolution of the enantiomeric forms of a molecule is crucial in the pharmaceutical, food, and agrochemical industries. The search for efficient, broad-spectrum, and yet simple methods for obtaining enantiomerically pure substances is a current challenge. Enantioselective resolution methods rely on an asymmetric environment that allows the two antipodes of a chiral molecule to be distinguished. In addition to enantiomeric separation techniques, such as chromatography and electrophoresis, new promising approaches involving out-of-the-scheme synergistic effects between chiral selectors (CS) and external stimuli are emerging. This Trends article discusses different enantioselective mechanisms triggered by unconventional physicochemical stimuli for the design of avant-garde approaches that could offer novel perspectives in the field of chiral resolution.
Collapse
Affiliation(s)
| | - Sara Grecchi
- Dip. Di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | | | - Gerardo Salinas
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Serena Arnaboldi
- Dip. Di Chimica, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Grecchi S, Salinas G, Cirilli R, Benincori T, Ghirardi S, Kuhn A, Arnaboldi S. Miniaturized enantioselective tubular devices for the electromechanical wireless separation of chiral analytes. Chem 2024; 10:660-674. [PMID: 38344168 PMCID: PMC10857812 DOI: 10.1016/j.chempr.2023.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2025]
Abstract
Chirality plays a crucial role in different research fields, ranging from fundamental physico-chemistry to applied aspects in materials science and medicine. In this context, enantioselective loading and pumping of chiral analytes for analysis, separation, and cargo delivery applications is an interesting scientific challenge. Herein, we introduce artificial chiral soft electromechanical pumps based on a bi-layer film built up by electrodepositing polypyrrole and an inherently chiral conducting oligomer at its internal surface. The enantioselective device can be driven by bipolar electrochemistry to act as a pump, allowing the selective loading and separation of different chiral analytes injected as pure enantiomers and in racemic form (i.e., doxorubicin, a chemotherapy drug, limonene, carvone, and a chiral ferrocene). The synergy between wireless electromechanical actuation and inherent enantiodiscrimination features makes these actuators excellent candidates for the controlled handling of chiral molecules in the frame of potential applications ranging from analysis to drug delivery.
Collapse
Affiliation(s)
- Sara Grecchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Sara Ghirardi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Serena Arnaboldi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
3
|
Yarkaeva Y, Nazyrov M, Abdullin Y, Kovyazin P, Maistrenko V. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative. Chirality 2023; 35:625-635. [PMID: 36951070 DOI: 10.1002/chir.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
For medicine and pharmaceuticals, the problem of determining and recognizing the enantiomers of biologically active compounds is an actual issue because the enantiomers of the same substance can have different effects on living organisms. This paper describes the development of an enantioselective voltammetric sensor (EVS) based on a glassy carbon electrode (GCE) modified with mesoporous graphitized carbon black Carbopack X (CpX) and a fulvene derivative (1S,4R)-2-cyclopenta-2,4-dien-1-ylidene-1-isopropyl-4-methylcyclohexane (CpIPMC) for recognition and determination of tryptophan (Trp) enantiomers. Synthesized CpIPMC was characterized by 1 H and 13 C nuclear magnetic resonance (NMR), chromatography-mass spectrometry, and polarimetry. The proposed sensor platform was studied by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Using the square-wave voltammetry (SWV), it was established that the developed sensor is an effective chiral platform for the quantitative determination of Trp enantiomers, including in a mixture and in biological fluids like urine and blood plasma, with adequate precision and recovery ranged from 96% to 101%.
Collapse
Affiliation(s)
- Yulia Yarkaeva
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Marat Nazyrov
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Yaroslav Abdullin
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Pavel Kovyazin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Ufa, Russia
| | - Valery Maistrenko
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
4
|
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar electrochemical rotors for the direct transduction of molecular chiral information. Biosens Bioelectron 2022; 218:114740. [PMID: 36179630 DOI: 10.1016/j.bios.2022.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Efficient monitoring of chiral information of bioactive compounds has gained considerable attention, due to their involvement in different biochemical processes. In this work, we propose a novel dynamic system for the easy and straightforward recognition of chiral redox active molecules and its possible use for the efficient measurement of enantiomeric excess in solution. The approach is based on the synergy between the localized enantioselective oxidation of only one of the two antipodes of a chiral molecule and the produced charge-compensating asymmetric proton flux along a bipolar electrode. The resulting clockwise or anticlockwise rotation is triggered only when the probe with the right chirality is present in solution. The angle of rotation shows a linear correlation with the analyte concentration, enabling the quantification of enantiomeric ratios in mixtures where the two antipodes are present in solution. This device was successfully used to simultaneously measure different ratios of the enantiomers of 3,4-dihydroxyphenylalanine and tryptophan. The versatility of the proposed approach opens up the possibility to use such a dynamic system as a straightforward (bio)analytical tool for the qualitative and quantitative discrimination of different redox active chiral probes.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France.
| |
Collapse
|
5
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
7
|
Butcha S, Lapeyre V, Wattanakit C, Kuhn A. Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. Chem Sci 2022; 13:2339-2346. [PMID: 35310499 PMCID: PMC8864712 DOI: 10.1039/d2sc00056c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
In modern chemistry, chiral (electro)catalysis is a powerful strategy to produce enantiomerically pure compounds (EPC). However, it still struggles with uncontrollable stereochemistry due to side reactions, eventually producing a racemic mixture. To overcome this important challenge, a well-controlled design of chiral catalyst materials is mandatory to produce enantiomers with acceptable purity. In this context, we propose the synergetic combination of two strategies, namely the elaboration of mesoporous Pt films, imprinted with chiral recognition sites, together with the spatially controlled formation of a self-assembled monolayer. Chiral imprinted metals have been previously suggested as electrode materials for enantioselective recognition, separation and synthesis. However, the outermost surface of such electrodes is lacking chiral information and thus leads to unspecific reactions. Functionalising selectively this part of the electrode with a monolayer of organosulfur ligands allows an almost total suppression of undesired side reactions and thus leads to a boost of enantiomeric excess to values of over 90% when using these surfaces in the frame of enantioselective electrosynthesis. In addition, this strategy also decreases the total reaction time by one order of magnitude. The study therefore opens up promising perspectives for the development of heterogeneous enantioselective electrocatalysis strategies.
Collapse
Affiliation(s)
- Sopon Butcha
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| | - Véronique Lapeyre
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Alexander Kuhn
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| |
Collapse
|
8
|
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Assavapanumat S, Butcha S, Ittisanronnachai S, Kuhn A, Wattanakit C. Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Pt-Ir Films Supported on Ni Foam. Chem Asian J 2021; 16:3345-3353. [PMID: 34416087 DOI: 10.1002/asia.202100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/11/2022]
Abstract
The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt-Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Sopon Butcha
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Somlak Ittisanronnachai
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| |
Collapse
|
10
|
Butcha S, Assavapanumat S, Ittisanronnachai S, Lapeyre V, Wattanakit C, Kuhn A. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat Commun 2021; 12:1314. [PMID: 33637758 PMCID: PMC7910542 DOI: 10.1038/s41467-021-21603-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
The design of efficient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past decades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asymmetric electrosynthesis (>95 %ee), combined with high electrochemical stability.
Collapse
Affiliation(s)
- Sopon Butcha
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Sunpet Assavapanumat
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Somlak Ittisanronnachai
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Veronique Lapeyre
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand.
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France.
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand.
| |
Collapse
|
11
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
12
|
Vacek J, Zadny J, Storch J, Hrbac J. Chiral Electrochemistry: Anodic Deposition of Enantiopure Helical Molecules. Chempluschem 2020; 85:1954-1958. [DOI: 10.1002/cplu.202000389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry Faculty of Medicine and Dentistry Palacky University Hnevotinska 3 77515 Olomouc Czech Republic
| | - Jaroslav Zadny
- Institute of Chemical Process Fundamentals Czech Academy of Sciences Rozvojova 135 16502 Prague 6 Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals Czech Academy of Sciences Rozvojova 135 16502 Prague 6 Czech Republic
| | - Jan Hrbac
- Institute of Chemistry Masaryk University Kamenice 5 72500 Brno Czech Republic
| |
Collapse
|
13
|
Grecchi S, Arnaboldi S, Korb M, Cirilli R, Araneo S, Guglielmi V, Tomboni G, Magni M, Benincori T, Lang H, Mussini PR. Widening the Scope of “Inherently Chiral” Electrodes: Enantiodiscrimination of Chiral Electroactive Probes with Planar Stereogenicity. ChemElectroChem 2020. [DOI: 10.1002/celc.202000657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sara Grecchi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Serena Arnaboldi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Marcus Korb
- The University of Western AustraliaFaculty of Sciences, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei FarmaciIstituto Superiore di Sanità Viale Regina Elena 299 00161 Roma Italy
| | - Silvia Araneo
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Vittoria Guglielmi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Giorgio Tomboni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Mirko Magni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Heinrich Lang
- Technische Universität ChemnitzFaculty of Natural SciencesInstitute of Chemistry, Inorganic Chemistry Straße der Nationen 62 D-09107 Chemnitz Germany
| | - Patrizia R. Mussini
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| |
Collapse
|
14
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|