1
|
Kannen F, Adachi T, Nishimura M, Yoza K, Kusukawa T. Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift. Molecules 2024; 29:407. [PMID: 38257320 PMCID: PMC10820785 DOI: 10.3390/molecules29020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Several types of 1,4-diphenylanthracene derivatives 1-4 were prepared, and their photophysical properties were observed in the solid and solution states. Interestingly, the CN-group-substituted 1,4-diphenylanthracene derivative 2 was found to exhibit a higher fluorescence quantum yield (ϕf = 0.71) in the solid state than in the solution state, probably due to the formation of an intermolecular Ar-CN⋯H-Ar hydrogen bond and antiparallel type locked packing structure in the solid state. Furthermore, for some derivatives, an increase in the fluorescence quantum yield was observed in the PMMA film (1 wt%) over both the solid state and the solution state. More interestingly, some of the 1,4-diphenylanthracene derivatives exhibited unusual mechanofluorochromic properties with a "hypsochromic shift" in luminous color depending on the substituents of the phenyl group, and with the derivatives having CF3, OMe, CN, and two F substituents (1d-1f, 2-4) showing a significant luminous color change with a "hypsochromic shift" after grinding. However, no change in the luminous color was observed for the derivatives having H, Me, and one F substituent (1a-1c), and especially for some of the CN-substituted derivatives, a reversible luminous color change with a "hypsochromic shift" was observed, probably due to the formation of an antiparallel type packing structure. These "hypsochromic" anthracene derivatives could probably be utilized as new mechanofluorochromic materials.
Collapse
Affiliation(s)
- Fumihiro Kannen
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tadatoshi Adachi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Manato Nishimura
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Yoza
- Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama 221-0022, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Aggregation induced emission and mechanofluorochromism of tetraphenylethene fused thiazolo[5,4‑d]thiazole derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Nakahara M, Kurahayashi K, Hanaya K, Sugai T, Higashibayashi S. One-Step Synthesis of Acylborons from Acyl Chlorides through Copper-Catalyzed Borylation with Polystyrene-Supported PPh 3 Ligand. Org Lett 2022; 24:5596-5601. [PMID: 35899907 DOI: 10.1021/acs.orglett.2c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a one-step synthesis of acylborons from both readily available acyl chlorides and bis(pinacolato)diboron through copper(I)-catalyzed borylation. Under the reaction conditions using tBuOLi, polystyrene-supported triphenylphosphine as a copper ligand was found to promote the borylation of acyl chlorides while suppressing alcoholysis. This method enables the facile synthesis of potassium acyltrifluoroborates.
Collapse
Affiliation(s)
- Masataka Nakahara
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
4
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
5
|
Abstract
Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive emissions have fueled intense research due to their innovative applications in the fields of biotechnologies, optoelectronics, and materials. A strong structural diversity is observed among molecular materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their outstanding properties until a decade ago when analogues based on N^O, N^N, or N^C π-conjugated chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab initio calculations have rationalized experimental results and provided insightful feedback for future designs. This review article aims at providing a concise yet representative overview of the chemistry around the boranil core with the subsequent applications.
Collapse
|
6
|
Stoerkler T, Frath D, Jacquemin D, Massue J, Ulrich G. Dual‐State Emissive π‐Extended Salicylaldehyde Fluorophores: Synthesis, Photophysical Properties and First‐Principle Calculations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Denis Frath
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
- Université de Lyon, ENS de Lyon, CNRS UMR 5182 Laboratoire de Chimie 69342 Lyon France
| | | | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
7
|
Matsuura S, Taguchi J, Seki T, Ito H. Synthesis and Optical Properties of C, N-Swapped Boranils Derived from Potassium Acyltrifluoroborates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Satsuki Matsuura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
8
|
Holownia A, Apte CN, Yudin AK. Acyl metalloids: conformity and deviation from carbonyl reactivity. Chem Sci 2021; 12:5346-5360. [PMID: 34163766 PMCID: PMC8179550 DOI: 10.1039/d1sc00077b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Once considered as mere curiosities, acyl metalloids are now recognized for their utility in enabling chemical synthesis. This perspective considers the reactivity displayed by acylboron, -silicon, -germanium, and tellurium species. By highlighting the role of these species in various transformations, we demonstrate how differences between the comprising elements result in varied reaction outcomes. While acylboron compounds are primarily used in polar transformations, germanium and tellurium species have found utility as radical precursors. Applications of acylsilanes are comparatively more diverse, owing to the possibility to access both radical and polar chemistry.
Collapse
Affiliation(s)
- Aleksandra Holownia
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Chirag N Apte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrei K Yudin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
9
|
Wu D, Taguchi J, Tanriver M, Bode JW. Synthesis of Acylboron Compounds. Angew Chem Int Ed Engl 2020; 59:16847-16858. [PMID: 32510826 DOI: 10.1002/anie.202005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
10
|
Šterman A, Sosič I, Gobec S, Časar Z. Recent Advances in the Synthesis of Acylboranes and Their Widening Applicability. ACS OMEGA 2020; 5:17868-17875. [PMID: 32743157 PMCID: PMC7391254 DOI: 10.1021/acsomega.0c02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 05/27/2023]
Abstract
The most common types of acylboranes are acyltrifluoroborates, acyl MIDA-boronates, and monofluoroacylboronates. Because of the increasing importance of these compounds in the past decade, we highlight the recently reported synthetic strategies to access acylboranes. In addition, an expanding array of their applications has been discovered, based on either the ability of acylboranes to enter rapid amide-forming ligations or the retained ketone-like character of the carbonyl group. Therefore, we also describe ground-breaking achievements where acylboranes were successfully put to use, such as their utility in biochemical, material, and medicinal sciences.
Collapse
Affiliation(s)
- Andrej Šterman
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Zdenko Časar
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
- Lek
Pharmaceuticals d.d., Sandoz Development Center Slovenia, Verovškova ulica 57, 1526 Ljubljana, Slovenia
| |
Collapse
|
11
|
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
12
|
Tsuchiya Y, Yamaguchi K, Miwa Y, Kutsumizu S, Minoura M, Murai T. N,N-Diarylthiazol-5-amines: Structure-Specific Mechanofluorochromism and White Light Emission in the Solid State. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuki Tsuchiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kirara Yamaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Mao Minoura
- Department of Chemistry, Graduate School of Science, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|