1
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
2
|
Mora Flores EW, Suarez D, Uhrig ML, Postigo A. Photocatalyzed Perfluoroalkylation of Endoglycals. J Org Chem 2023. [PMID: 38050850 DOI: 10.1021/acs.joc.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The visible light-induced perfluoroalkyl (RF) radical reactions on peracetylglycals derived from hexoses and pentoses (galactal, glucal, arabinal, and xylal derivatives) were investigated. Various photocatalysts and perfluoroalkyl iodides (RF-I) were employed as sources of RF radicals with LEDs as the irradiation source. Particularly noteworthy was the use of an Iridium photocatalyst, Ir[dF(CF3)ppy]2(dtbpy))PF6, which yielded two distinct product types when applied to glucal. On the one hand, the 2-RF-substituted glucal was formed, a trend observed even when utilizing organic dyes as photocatalysts. On the other hand, the unexpected addition product, namely the 1-RF-2-iodo-α-manno-configured C-glycosyl derivative, was also obtained, as a result of a highly regioselective addition reaction of the RF moiety into the anomeric carbon, followed by attachment of the iodine atom on C-2 in axial disposition. This result contrasted with other radical reactions carried out on 2-unsubstituted glycals, where the incipient radical adds to C-2, generating a stabilized 1-glycosyl radical. The photocatalyzed radical perfluoroalkylations of peracetyl glycals derived from galactose, arabinose, and xylose all afforded the 2-RF-substituted glycals in good yields as a result of the expected vinylic substitution reaction. Mechanistic studies revealed that the 1-RF-2-iodo-α-manno-configured C-glycosyl derivatives arise from a radical chain reaction, whereas the 2-RF-substituted glycals proceed from inefficient chain processes.
Collapse
Affiliation(s)
- Erwin W Mora Flores
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Daniel Suarez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| |
Collapse
|
3
|
Bielski R, Mencer D. New syntheses of thiosaccharides utilizing substitution reactions. Carbohydr Res 2023; 532:108915. [PMID: 37597327 DOI: 10.1016/j.carres.2023.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Novel synthetic methods published since 2005 affording carbohydrates containing sulfur atom(s) are reviewed. The review is divided to subchapters based on the position of sulfur atom(s) in the sugar molecule. Only those methods that take advantage of substitution are discussed.
Collapse
Affiliation(s)
- Roman Bielski
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes-Barre, PA, 18766, United States; Chemventive, LLC Chadds Ford, PA, 19317, United States.
| | - Donald Mencer
- Department of Chemistry & Biochemistry, Wilkes University, Wilkes-Barre, PA, 18766, United States.
| |
Collapse
|
4
|
Lázár L, Tsagkarakou AS, Stravodimos G, Kontopidis G, Leffler H, Nilsson UJ, Somsák L, Leonidas DD. Strong Binding of C-Glycosylic1,2-Thiodisaccharides to Galectin-3─Enthalpy-Driven Affinity Enhancement by Water-Mediated Hydrogen Bonds. J Med Chem 2023; 66:12420-12431. [PMID: 37658813 DOI: 10.1021/acs.jmedchem.3c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Galectin-3 is involved in multiple pathways of many diseases, including cancer, fibrosis, and diabetes, and it is a validated pharmaceutical target for the development of novel therapeutic agents to address unmet medical needs. Novel 1,2-thiodisaccharides with a C-glycosylic functionality were synthesized by the photoinitiated thiol-ene click reaction of O-peracylated 1-C-substituted glycals and 1-thio-glycopyranoses. Subsequent global deprotection yielded test compounds, which were studied for their binding to human galectin-3 by fluorescence polarization and isothermal titration calorimetry to show low micromolar Kd values. The best inhibitor displayed a Kd value of 8.0 μM. An analysis of the thermodynamic binding parameters revealed that the binding Gibbs free energy (ΔG) of the new inhibitors was dominated by enthalpy (ΔH). The binding mode of the four most efficient 1,2-thiodisaccharides was also studied by X-ray crystallography that uncovered the unique role of water-mediated hydrogen bonds in conferring enthalpy-driven affinity enhancement for the new inhibitors. This 1,2-thiodisaccharide-type scaffold represents a new lead for galectin-3 inhibitor discovery and offers several possibilities for further development.
Collapse
Affiliation(s)
- László Lázár
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Anastasia S Tsagkarakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, SE-2210 Lund, Sweden
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, SE-2210 Lund, Sweden
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
5
|
Bege M, Singh V, Sharma N, Debreczeni N, Bereczki I, Poonam, Herczegh P, Rathi B, Singh S, Borbás A. In vitro and in vivo antiplasmodial evaluation of sugar-modified nucleoside analogues. Sci Rep 2023; 13:12228. [PMID: 37507429 PMCID: PMC10382589 DOI: 10.1038/s41598-023-39541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Drug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease. Herein, new nucleoside analogues including morpholino-nucleoside hybrids and thio-substituted nucleoside derivatives were prepared and evaluated for in vitro and in vivo antiparasitic activity that led a few hits especially nucleoside-thiopyranoside conjugates, which are highly effective against Pf3D7 and PfRKL-9 strains in submicromolar concentration. One adenosine derivative and four pyrimidine nucleoside analogues significantly reduced the parasite burden in mouse models infected with Plasmodium berghei ANKA. Importantly, no significant hemolysis and cytotoxicity towards human cell line (RAW) was observed for the hits, suggesting their safety profile. Preliminary research suggested that these thiosugar-nucleoside conjugates could be used to accelerate the antimalarial drug development pipeline and thus deserve further investigation.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, Debrecen, 4032, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health, Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Public Health, Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary.
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
6
|
Dada L, Colomer JP, Manzano VE, Varela O. Synthesis of thiodisaccharides related to 4-thiolactose. Specific structural modifications increase the inhibitory activity against E. coli β-galactosidase. Org Biomol Chem 2023; 21:2188-2203. [PMID: 36806338 DOI: 10.1039/d2ob02301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the search for new glycosidase inhibitors, a set of benzyl β-D-Gal-S-(1→4)-3-deoxy-4-thio-α-D-hexopyranosides was synthesized. Diverse configurations were installed at C-2 and C-4 of the glucose residue. The benzyl glycosidic group was kept intact or substituted by an electron-donating or electron-withdrawing group that could also participate in hydrogen bonding. All thiodisaccharides were found to be inhibitors of E. coli β-galactosidase. In general, benzyl thiodisaccharides were better inhibitors than those substituted (NO2 or NH2) on the benzyl ring. Thiodisaccharides containing a hexopyranoside, instead of a pentopyranoside, showed a weaker inhibitory activity, except for those having the α-D-xylo configuration, which exhibited inhibition constants of the same order of magnitude. These and previous results indicated that the inhibition process by thiodisaccharides is strongly dependent on the configuration of the 3-deoxy-4-thiopyranoside, as well as its substitution pattern (such as the presence of a benzyl glycoside). The enzyme-inhibitor interaction during the hydrolysis process involves a conformational selection resulting from rotation around the thioglycosidic bond and the flexibility of the terminal six-membered ring. Thus, the mentioned structural features of the inhibitor could give rise to favorable ground state conformations for the interaction with the enzyme, similar to those found for selected thiodisaccharides in the bound state. These studies demonstrated that the performance of thiodisaccharides as enzyme inhibitors could be increased by selecting the appropriate configuration and substitution of the hexopyranoside replacing the glucose moiety of 4-thiolactose.
Collapse
Affiliation(s)
- Lucas Dada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Juan Pablo Colomer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UNC, Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC).,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Edificio de Ciencias II, Córdoba, Argentina
| | - Verónica E Manzano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Oscar Varela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| |
Collapse
|
7
|
Herczeg M, Demeter F, Lisztes E, Racskó M, Tóth BI, Timári I, Bereczky Z, Kövér KE, Borbás A. Synthesis of a Heparinoid Pentasaccharide Containing l-Guluronic Acid Instead of l-Iduronic Acid with Preserved Anticoagulant Activity. J Org Chem 2022; 87:15830-15836. [PMID: 36411253 DOI: 10.1021/acs.joc.2c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.
Collapse
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH Egyetem tér 1, Debrecen H-4032, Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary.,Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 22, Debrecen H-4012, Hungary
| | - István Timári
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
8
|
Bege M, Kiss A, Bereczki I, Hodek J, Polyák L, Szemán-Nagy G, Naesens L, Weber J, Borbás A. Synthesis and Anticancer and Antiviral Activities of C-2′-Branched Arabinonucleosides. Int J Mol Sci 2022; 23:ijms232012566. [PMID: 36293420 PMCID: PMC9603951 DOI: 10.3390/ijms232012566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2’ position were prepared from the corresponding 3’,5’-O-silylene acetal-protected nucleoside 2’-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay. Three pyrimidine nucleosides containing C2’-butylsulfanylmethyl or -acetylthiomethyl groups showed promising cytotoxicity at low micromolar concentrations with good selectivity towards tumor cells. SAR analysis using a methyl β-d-arabinofuranoside reference compound showed that the silyl-protecting group, the nucleobase and the corresponding C2’ substituent are crucial for the cell growth inhibitory activity. The effects of the three most active nucleoside analogues on parameters indicative of cytotoxicity, such as cell size, division time and cell generation time, were investigated by near-infrared live cell imaging, which showed that the 2’-acetylthiomethyluridine derivative induced the most significant functional and morphological changes. Some nucleoside analogues also exerted anti-SARS-CoV-2 and/or anti-HCoV-229E activity with low micromolar EC50 values; however, the antiviral activity was always accompanied by significant cytotoxicity.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Alexandra Kiss
- Department of Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic
| | - Lenke Polyák
- Department of Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Gábor Szemán-Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-52512900
| |
Collapse
|
9
|
Morrone-Pozzuto P, Uhrig ML, Agusti R. Synthesis of Oligosaccharides Containing the S-Gal p(α1 → 3)Gal p Unit, Glycomimetic of the Epitope Recognized by Lytic Antibodies. J Org Chem 2022; 87:13455-13468. [PMID: 35775947 DOI: 10.1021/acs.joc.2c01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two important activities take place in the surface of Trypanosoma cruzi, the agent of Chagas disease: the trans-sialidase (TcTS) catalyzes the transfer of sialic acid from the host glycoconjugates to the mucin-like glycoproteins from the parasite and the presence of lytic antibodies recognize the epitope α-Galp(1 → 3)-β-Galp(1 → 4)-α-GlcNAcp. This antigenic structure is known to be present in the parasite mucins; however, in order to be substrates of trans-sialidase, some of the galactose residues should be in the β-Galp configuration. To study the interaction between both activities, it is important to count the synthetic structures as well as the structural-related glycomimetics. With this purpose, we addressed the synthesis of a trisaccharide and two isomeric tetrasaccharides containing the 1-S-α-Galp(1 → 3)-β-Galp motif, the thio analog of the epitope recognized by lytic antibodies. Starting with a common lactose precursor, the sulfur function was incorporated by double inversion of the configuration of the galactose residue that was further glycosylated using different activated donors. Both tetrasaccharides were good acceptors of sialic acid in the reaction catalyzed by TcTS, as determined by high-performance anion exchange chromatography.
Collapse
Affiliation(s)
- Pablo Morrone-Pozzuto
- Departamento de Química Orgánica, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Rosalia Agusti
- Departamento de Química Orgánica, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
10
|
Convenient synthesis of mixed S–Se-linked pseudodisaccharides by sulfur and selenium exchange. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Debreczeni N, Bege M, Borbás A. Synthesis of Potential Glycosyl Transferase Inhibitors by Thio‐Click Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Doctoral School of Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
- MTA-DE Molecular Recognition and Interaction Research Group University of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
| |
Collapse
|
12
|
The Very First Modification of Pleuromutilin and Lefamulin by Photoinitiated Radical Addition Reactions-Synthesis and Antibacterial Studies. Pharmaceutics 2021; 13:pharmaceutics13122028. [PMID: 34959310 PMCID: PMC8704873 DOI: 10.3390/pharmaceutics13122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19–C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.
Collapse
|
13
|
Liu Y, Yu XB, Zhang XM, Zhong Q, Liao LH, Yan N. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature. RSC Adv 2021; 11:26666-26671. [PMID: 35479995 PMCID: PMC9037310 DOI: 10.1039/d1ra04013h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
A mild, convenient and transition-metal-free protocol for the synthesis of aryl 1-thioglycosides is presented via arynes generated in situ combined with glycosyl thiols in the presence of TBAF(tBuOH)4. The methodology provides a general and efficient way to prepare a series of functionalized thioglycosides in good to excellent yields with a perfect control of the anomeric configuration at room temperature. In addition, the reaction conditions tolerate a variety of the pentoses and hexoses, and the reaction also performs smoothly on protected monosaccharides and disaccharides.
Collapse
Affiliation(s)
- Yao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiao-Bing Yu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiang-Mei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Qian Zhong
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Li-Hua Liao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China .,College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
14
|
Cristófalo AE, Cano ME, Uhrig ML. Synthesis of Thiodisaccharides Bearing N-Acetylhexosamine Residues: Challenges, Achievements and Perspectives. CHEM REC 2021; 21:2808-2836. [PMID: 34170606 DOI: 10.1002/tcr.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
Carbohydrate-protein interactions are involved in a myriad of biological processes. Thus, glycomimetics have arisen as one of the most promising synthetic targets to that end. Within the broad variety of glycomimetics, thiodisaccharides have proven to be excellent tools to study these processes, and even more, some of them unveiled interesting biological activities. This review brings together research made on the introduction of N-acetylhexosamine residues into thiodisaccharides to date, passing through classic substitution (as SN 2, thioglycosylation and ring-opening reactions) and addition (as thiol-ene coupling and Michael-type additions) reactions. Recent and interesting developments regarding addition reactions to vinyl azides, cross-coupling reactions and novel chemoenzymatic methods are also discussed.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - María Emilia Cano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| |
Collapse
|
15
|
Pang B, Liu R, Han G, Wang W, Zhang W. The synthesis of thermoresponsive POSS-based eight-arm star poly( N-isopropylacrylamide): A comparison between Z-RAFT and R-RAFT strategies. Polym Chem 2021. [DOI: 10.1039/d1py00087j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Z-Type POSS-based eight-arm star poly(N-isopropylacrylamide), POSS-(PNIPAM)8-Z, is synthesized and demonstrated to be a thermoresponsive switchable emulsifier.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wei Wang
- School of Chemistry & Material Science
- Langfang Normal University
- Langfang
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
16
|
Anisimov AA, Temnikov MN, Krizhanovskiy I, Timoshina EI, Milenin SA, Peregudov AS, Dolgushin FM, Muzafarov AM. A thiol–ene click reaction with preservation of the Si–H bond: a new approach for the synthesis of functional organosilicon compounds. NEW J CHEM 2021. [DOI: 10.1039/d1nj00411e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work presents an approach for the preparation of functional hydrosilanes.
Collapse
Affiliation(s)
- Anton A. Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Maxim N. Temnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Ilya Krizhanovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Ekaterina I. Timoshina
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
| | - Sergey A. Milenin
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
- Moscow
- Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Fedor M. Dolgushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences (IGIC RAS)
- Moscow
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
- Moscow
| |
Collapse
|
17
|
Ge J, Zhang L, Pu L, Zhang Y, Pei Z, Dong H. The Oxidation of
S
‐Acetyl by Nitrite: Mechanism and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian‐Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
- School of Chemistry and Chemical Engineering Hubei Polytechnic University Guilinbei Road 16 Huangshi 435003 P. R. China
| | - Le‐Feng Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Liang Pu
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Ying Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Zhi‐Chao Pei
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| |
Collapse
|
18
|
Bege M, Bereczki I, Molnár DJ, Kicsák M, Pénzes-Daku K, Bereczky Z, Ferenc G, Kovács L, Herczegh P, Borbás A. Synthesis and oligomerization of cysteinyl nucleosides. Org Biomol Chem 2020; 18:8161-8178. [PMID: 33020786 DOI: 10.1039/d0ob01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine. Dipeptidyl dinucleosides and pentameric cysteinyl uridine were prepared from the monomeric building blocks, which are the first members of a new class of peptide nucleic acids containing the entire ribofuranosyl nucleoside units bound to the peptide backbone.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary. and Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, H-4032, Hungary and MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Debrecen, H-4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Dénes J Molnár
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Krisztina Pénzes-Daku
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Center, Szeged, H-6726, Hungary
| | - Lajos Kovács
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
19
|
Borbás A. Photoinitiated Thiol-ene Reactions of Enoses: A Powerful Tool for Stereoselective Synthesis of Glycomimetics with Challenging Glycosidic Linkages. Chemistry 2020; 26:6090-6101. [PMID: 31910299 PMCID: PMC7317871 DOI: 10.1002/chem.201905408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Thioglycosides and C-glycosides represent pharmacologically useful classes of glycomimetics that possess a high degree of biological stability. One emerging tool for the stereoselective synthesis of thioglycosides is the photoinitiated addition of thiols to unsaturated sugars. Moreover, thiyl radical-mediated reactions of exo-glycals and 1-substituted endo-glycals offer facile routes to β-C-glycosidic structures. This Concept article summarizes the thiol-ene coupling strategies developed recently by our group and Somsák's group for the synthesis of several kinds of glycomimetics which are difficult to synthesize by conventional methods. One unusual characteristic of the thiol-ene reactions of endo-glycals is that heating inhibits, whereas cooling promotes the reaction. This unique temperature dependence as well as the effects of the enose structures and thiol configurations on the efficacy and stereoselectivity of the reactions are also discussed.
Collapse
Affiliation(s)
- Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
20
|
József J, Debreczeni N, Eszenyi D, Borbás A, Juhász L, Somsák L. Synthesis and photoinitiated thiol–ene reactions of exo-mannals – a new route to C-β-d-mannosyl derivatives. RSC Adv 2020; 10:34825-34836. [PMID: 35514420 PMCID: PMC9056834 DOI: 10.1039/d0ra07115c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/06/2020] [Indexed: 01/19/2023] Open
Abstract
Syntheses of acyl protected exo-mannal derivatives were developed starting from O-peracylated mannopyranoses via the corresponding anhydro-aldose tosylhydrazones under modified Bamford–Stevens conditions. The synthesis of analogous O-peralkylated (benzylated and isopropylenated) derivatives was carried out from pyranoid and furanoid mannonolactones using methylene transfer reagents. Photoinitiated thiol–ene additions of these exo-mannals resulted in the corresponding C-(mannopyranosyl/mannofuranosyl)methyl sulfides in medium to good yields with exclusive regio- and β(d) stereoselectivities. A synthetic procedure was elaborated for O-peracylated exo-mannals. Thiol-ene additions to pyranoid and furanoid exo-mannals gave mannosylmethyl sulfide type adducts with exclusive regio- and β(d)-stereoselectivities including disaccharide mimetics.![]()
Collapse
Affiliation(s)
- János József
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
- University of Debrecen
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
- University of Debrecen
| | - Dániel Eszenyi
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - László Juhász
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - László Somsák
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| |
Collapse
|