1
|
Pei BB, Wang J, Ji J, Chen Q, Wang CQ, Feng C. Radical Decarboxylation-Initiated S H2' Reaction of β,β-Difluoroenol Sulfonates: Access to α,α-Difluoroketones. Org Lett 2024. [PMID: 38796776 DOI: 10.1021/acs.orglett.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Reported herein is a novel radical decarboxylation-initiated SH2' reaction of β,β-difluoroenol sulfonates. This transformation is characterized by mild reaction conditions, a broad substrate scope, and late-stage modification of drug molecules, providing general and mechanistically distinct access to bioactive and synthetically versatile α,α-difluoroketones. Preliminary mechanistic studies demonstrate that this reaction proceeds through a succession of silver-mediated decarboxylative radical generation and radical-addition-induced β-elimination of the sulfonyl radical.
Collapse
Affiliation(s)
- Bing-Bing Pei
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jiali Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jiuyang Ji
- Capital Construction Office, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Qing Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Cheng-Qiang Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| |
Collapse
|
2
|
Shen D, Sun C, Han Y, Luo Z, Ren T, Zhang Q, Huang W, Xie J, Jia Y, Chao M. Additive-free oxychlorination of unsaturated C-C bonds with tert-butyl hypochlorite and water. Org Biomol Chem 2024; 22:3080-3085. [PMID: 38563263 DOI: 10.1039/d4ob00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein we report an additive-free protocol for the facile synthesis of α,α-dichloroketones and α-chlorohydrins from various aryl terminal, diaryl internal, and aliphatic terminal alkynes and alkenes, respectively. The commercially available tert-butyl hypochlorite (tBuOCl) was employed as a suitable chlorinating reagent, being accompanied by the less harmful tBuOH as the by-product. In addition, the oxygen atoms in the products came from water rather than molecular oxygen, based on the 18O-labelling experiments. Meanwhile, the diastereoselectivity of the Z- and the corresponding E-alkenes has been compared and rationalized. Using a group of control experiments, the possible mechanisms have been proposed as the initial electrophilic chlorination of unsaturated C-C bonds in a Markovnikov-addition manner in general followed by a nucleophilic addition with water. This work simplified the oxychlorination method with a mild chlorine source and a green oxygen source under ambient conditions.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Chaoyue Sun
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Yun Han
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Zhen Luo
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Ting Ren
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Qin Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Wenting Huang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Jianru Xie
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Ying Jia
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Mianran Chao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| |
Collapse
|
3
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Messara A, Panossian A, Mikami K, Hanquet G, Leroux FR. Direct Deprotonative Functionalization of α,α-Difluoromethyl Ketones using a Catalytic Organosuperbase. Angew Chem Int Ed Engl 2023; 62:e202215899. [PMID: 36602033 DOI: 10.1002/anie.202215899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The deprotonative functionalization of α,α-difluoromethyl ketones is described herein. Using a catalytic organosuperbase and a silane additive, the corresponding difluoroenolate could be generated and trapped with aldehydes to deliver various α,α-difluoro-β-hydroxy ketones in high yields. This new strategy tolerates numerous functional groups and represents the access to the difluoroenolate by direct deprotonation of the difluoromethyl unit. The diastereoselective version of the reaction was also investigated with d.r. up to 93 : 7. Several transformations were performed to demonstrate the synthetic potential of these α,α-difluoro-β-hydroxy ketones. In addition, this method has been extended to the use of other electrophiles such as imines and chalcogen derivatives, and a difluoromethyl sulfoxide as nucleophile, thus leading to a diversity of difluoromethylene compounds.
Collapse
Affiliation(s)
- Amélia Messara
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, 152-8552, Tokyo, Japan
| | - Gilles Hanquet
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
5
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
6
|
Xiang JC, Wang JW, Yuan P, Ma JT, Wu AX, Liao ZX. Switching Over of the Chemoselectivity: I 2-DMSO-Enabled α,α-Dichlorination of Functionalized Methyl Ketones. J Org Chem 2022; 87:15101-15113. [PMID: 36349364 DOI: 10.1021/acs.joc.2c01591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Precise control of the chemoselectivity of the halogenation of a substrate equipped with multiple nucleophilic sites is highly demanding and challenging. Most reported chlorinations of methyl ketones show poor compatibility or even exclusive selectivity toward electron-rich arene, olefin, and alkyne residues. This is attributed to the direct or in situ employment of electrophilic Cl2/Cl+ species. Here, we reported that, even bearing those competitive residues, methyl ketones can still undergo dichlorination to afford α,α-dichloroketones in a chemo-specific manner. Enabled by the I2-dimethyl sulfoxide catalytic system, in which hydrochloric acid only acts as a nucleophilic Cl- donor, this straightforward dichlorination reaction is safe and operator-friendly and has high atomic economy, giving access to structurally diverse α,α-dichloroketones in good yields and with good functional-group tolerance.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Peng Yuan
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Wang X, Chen X, Qi L, Ma X, Zhou Y, Jiang X, Zhu W. Halogenation of Unsaturated Amides: Synthesis of Halogenated (Spiro)Oxazolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xueqing Wang
- College of Life Sciences China Jiliang University Hangzhou 310018 China
| | - Xuerong Chen
- College of Life Sciences China Jiliang University Hangzhou 310018 China
| | - Liang Qi
- College of Life Sciences China Jiliang University Hangzhou 310018 China
| | - Xingyu Ma
- School of Pharmaceutical Science Sun Yat-Sen University Guangzhou 510006 China
| | - Yifeng Zhou
- College of Life Sciences China Jiliang University Hangzhou 310018 China
| | - Xianxing Jiang
- School of Pharmaceutical Science Sun Yat-Sen University Guangzhou 510006 China
| | - Weiwei Zhu
- School of Pharmaceutical Science Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
8
|
Yu ZL, Chen JW, Chen YL, Zheng RJ, Ma M, Chen JP, Shen ZL, Chu XQ. DMSO-Promoted Difluoroalkylation of Organophosphonium Salts with Difluoroenol Silyl Ethers. Org Lett 2022; 24:5557-5561. [PMID: 35867631 DOI: 10.1021/acs.orglett.2c02088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method for the synthesis of β,β-di(hetero)aryl-α,α-difluorinated ketones using readily available organophosphonium salts and difluoroenol silyl ethers has been developed. This mild reaction features a good functional group tolerance, a scaled-up synthesis, and synthetic simplicity. By taking advantage of DMSO as a less-toxic promoter and solvent for the difluoroalkylation and C-P bond functionalization, the use of transition-metal catalysts and sensitive additives could be avoided.
Collapse
Affiliation(s)
- Zi-Lun Yu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jia-Wei Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yu-Lan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ren-Jun Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian-Ping Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
9
|
Alvi S, Jayant V, Ali R. Applications of Oxone® in Organic Synthesis: An Emerging Green Reagent of Modern Era. ChemistrySelect 2022. [DOI: 10.1002/slct.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Vikrant Jayant
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
10
|
Zheng C, Cui X, Wu J, Wu P, Yu Y, Liu H, Wu F. Synthesis and Application of Monofluoroalkyl Building Blocks: α‐Halo‐α‐fluoroketones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xuhui Cui
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P.R.China
| | - Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yanyan Yu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Hanwen Liu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
11
|
Sadhukhan S, Baire B. Tunable Lewis Basicity and Nucleophilicity of Water against α,α-Dihalo-β-acetoxyketones for the Selective Synthesis of α-Haloenones and 1,2-Diketones. J Org Chem 2022; 87:5530-5542. [PMID: 35394788 DOI: 10.1021/acs.joc.1c02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery and systematic study of tunable yet competitive nucleophilicity and Lewis basicity of water against novel building blocks α,α-dihalo-β-acetoxyketones (possessing a tertiary acetate) have been reported. This distinct reactivity resulted in the formation of two competitive and different products 1,2-diketones and α-haloenones from a common intermediate α,α-dihalo-β-acetoxyketones through the nucleophilicity and Lewis basicity of water, respectively. A systematic study to understand the effect of temperature and amount of water on the product distribution revealed that a lower temperature in combination with a higher amount of water shows a high preference for 1,2-diketones over α-haloenones. Measuring the dielectric constant (permittivity, ε) of various reaction media at various temperatures and a correlation with the experimental observations suggested that the reaction media with a higher dielectric constant exhibit the nucleophilic character and hence show a preference for 1,2-diketones over α-haloenones.
Collapse
Affiliation(s)
- Santu Sadhukhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
12
|
Li Y, Chen X, Huang D, Xie Z, Liu Y. Hypervalent Iodine-Mediated Chemoselective Bromination of Terminal Alkynes. Front Chem 2022; 10:879789. [PMID: 35464229 PMCID: PMC9021491 DOI: 10.3389/fchem.2022.879789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Practical approaches for chemoselective mono-bromination, di-bromination, and tetra-bromination of terminal alkynes to generate 1-bromoalkynes, 1,2-dibromoalkenes, α,α-dibromoketones, and 1,1,2,2-tetrabromoalkanes based on efficient oxidative brominations mediated by a hypervalent iodine reagent have been developed. Chemoselective bromination can be realized under mild conditions by altering the bromine source. The tetrabutylammonium bromide (TBAB)/(diacetoxyiodo)benzene (PIDA) system is specific for mono-bromination to provide 1-bromoalkynes, while the NaBr/PIDA system is selective toward di-bromination to achieve 1,2-dibromoalkenes. When a certain amount of water was added to the NaBr/PIDA system, a different di-bromination product, α,α-dibromo ketones, was generated. Tetra-bromination of terminal alkynes provides an efficient protocol for the synthesis of 1,1,2,2-tetrabromoalkanes in a system with an excess loading of NaBr/PIDA in one pot. This bromination affords good yields (up to 99%) with excellent chemoselectivity (up to 100%). These methods can be applied to the efficient chemoselective synthesis of bromide derivatives, intermediates, and related biologically active compounds.
Collapse
Affiliation(s)
- Youzhi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xuemei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Daya Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhenming Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- *Correspondence: Yan Liu, ; Zhenming Xie,
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
- *Correspondence: Yan Liu, ; Zhenming Xie,
| |
Collapse
|
13
|
Smonou I, Giannopoulos V, Katsoulakis N. Dichlorination of β-Keto Esters and 1,3-Diketones Mediated by Oxone/Aluminum Trichloride Mixture in Aqueous Medium. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA new method for the α,α-dichlorination of β-keto esters using Oxone/aluminum trichloride mixture in aqueous medium has been developed. This useful process has also been applied successfully for the dichlorination of 1,3-diketones. The dichlorinated compounds have been produced in one step, high yields, and short reaction times.
Collapse
|
14
|
Fang M, Wu P, Wang X, Xie Z, Hou Y, Liu Y, Wu J, Wu F. Enantioselective Copper-Catalyzed Intermolecular Cyanobenzoyldifluoromethylation of Alkenes: Access to Chiral β-Difluoroacyl Nitriles. J Org Chem 2022; 87:4107-4111. [PMID: 35209716 DOI: 10.1021/acs.joc.1c02908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel asymmetric copper-catalyzed intermolecular cyanobenzoyldifluoromethylation of alkenes with iododifluoromethyl ketones and TMSCN has been reported, which provides a particularly valuable route to access chiral β-difluoroacyl nitriles with excellent enantioselectivities. The method permits the efficient cyanation of varied β-difluoroacyl-benzylic radicals in mild conditions with high functional group tolerance. The reaction proceeds through a radical pathway. In order to get insight into the stereochemical outcome, computational mechanistic studies were conducted.
Collapse
Affiliation(s)
- Mougui Fang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Pingjie Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xia Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ziyue Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yali Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
15
|
Sadhukhan S, Mondal S, Baire B. An unexpected Formation of 2‐Arylbenzimidazoles from α,α‐diiodo‐α’‐acetoxyketones and o‐Phenylenediamines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Beeraiah Baire
- Indian Institute of Technology, Madras Chemistry CY 209C, Department of ChemsitryIIT Madras, AdyarChennaiIndia 600036 Chennai INDIA
| |
Collapse
|
16
|
Yang J, Liu S, Hong P, Li J, Wang Z, Ren J. Synthesis of 2,2-Difluoro-3-hydroxy-1,4-diketones via an HFIP-Catalyzed Mukaiyama Aldol Reaction of Glyoxal Monohydrates with Difluoroenoxysilanes. J Org Chem 2022; 87:1144-1153. [PMID: 34994195 DOI: 10.1021/acs.joc.1c02504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel efficient HFIP-catalyzed synthesis of structurally diverse 2,2-difluoro-3-hydroxy-1,4-diketone derivatives from readily available glyoxal monohydrates and difluoroenoxysilanes is described. This convenient protocol is induced by the distinctive fluorine effect of the reactants and the fluoroalcohol catalyst, which represents the first application of fluoroalcohol catalysis in a Mukaiyama aldol reaction.
Collapse
Affiliation(s)
- Jianguo Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China.,Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Saimei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Peng Hong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
17
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
18
|
Broese T, Ehlers P, Langer P, von Langermann J. Chemoenzymatic Asymmetric Synthesis of Pyridine-Based α-Fluorinated Secondary Alcohols. Chembiochem 2021; 22:3314-3318. [PMID: 34520599 PMCID: PMC9293303 DOI: 10.1002/cbic.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Fluoro‐substituted and heteroaromatic compounds are valuable intermediates for a variety of applications in pharma‐ and agrochemistry and synthetic chemistry. This study investigates the chemoenzymatic preparation of chiral alcohols bearing a heteroaromatic ring with an increasing degree of fluorination in α‐position. Starting from readily available picoline derivatives prochiral α‐halogenated acyl moieties were introduced with excellent selectivity and 64–95 % yield. The formed carbonyl group was subsequently reduced to the corresponding alcohols using the alcohol dehydrogenase from Lactobacillus kefir, yielding an enantiomeric excess of 95–>99 % and up to 98 % yield.
Collapse
Affiliation(s)
- Timo Broese
- Institute of Chemistry, Biocatalytic Synthesis Group, University of Rostock, Albert-Einstein-Str. 3 A, 18059, Rostock, Germany.,Graforce GmbH, Johann-Hittorf-Str. 8, 12489, Berlin, Germany
| | - Peter Ehlers
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Str. 3 A, 18059, Rostock, Germany
| | - Peter Langer
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Str. 3 A, 18059, Rostock, Germany
| | - Jan von Langermann
- Institute of Chemistry, Biocatalytic Synthesis Group, University of Rostock, Albert-Einstein-Str. 3 A, 18059, Rostock, Germany
| |
Collapse
|
19
|
Lipon T, Marpna ID, Wanniang K, Shangpliang OR, Laloo BM, Nongkhlaw R, Myrboh B. Selenium Dioxide-Mediated Bromination of α,β-Unsaturated Ketones Using N-Bromosuccinimide in the Presence of p-Toluenesulfonic Acid: A Versatile Route for the Synthesis of α'-Bromo-4-arylbut-3-en-2-one and α',α'-Dibromo-4-arylbut-3-en-2-one. ACS OMEGA 2021; 6:27466-27477. [PMID: 34693167 PMCID: PMC8529695 DOI: 10.1021/acsomega.1c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
An efficient method for the synthesis of α,β-unsaturated α'-bromoketones and α,β-unsaturated α',α'-dibromoketones is described using N-bromosuccinimide (NBS) as the brominating agent mediated by selenium dioxide (SeO2) in the presence of p-toluenesulfonic acid (PTSA) monohydrate in toluene. The method is simple, employing easily available shelf reagents to afford a wide range of products in good yields. The method highlighted that simple fine-tuning of the reaction conditions and molar equivalents of the reactants easily affords either mono- or dibrominated products in excellent yields. A number of these products have not been reported in the literature. All of the reactions were carried out in gram-scale quantities.
Collapse
|
20
|
Tu D, Luo J, Jiang W, Tang Q. Solvent-free preparation of α,α-dichloroketones with sulfuryl chloride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Rozatian N, Hodgson DRW. Reactivities of electrophilic N-F fluorinating reagents. Chem Commun (Camb) 2021; 57:683-712. [PMID: 33367354 DOI: 10.1039/d0cc06339h] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic fluorination represents one of the most direct and useful methods available for the selective introduction of fluorine into organic compounds. Electrophilic fluorinating reagents of the N-F class have revolutionised the incorporation of fluorine atoms into both pharmaceutically- and agrochemically-important substrates. Since the earliest N-F reagents were commercialised in the 1990s, their reactivities have been investigated using qualitative and, more recently, quantitative methods. This review discusses the different experimental approaches employed to determine reactivities of N-F reagents, focussing on the kinetics studies reported in recent years. We make critical evaluations of the experimental approaches against each other, theoretical approaches, and their applicability towards practical problems. The opportunities for achieving more efficient synthetic electrophilic fluorination processes through kinetic understanding are highlighted.
Collapse
Affiliation(s)
- Neshat Rozatian
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| | - David R W Hodgson
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| |
Collapse
|
22
|
Huang QP, Huang Y, Wang AJ, Zhao L, Jia J, Yu Y, Tong J, Gu J, He CY. Visible light induced deaminative alkylation of difluoroenoxysilanes: a transition metal free strategy. Org Chem Front 2021. [DOI: 10.1039/d1qo00507c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible-light-promoted deaminative alkylation of difluoroenoxysilanes utilizing Hantzsch ester as a catalyst or through substrate-induced pathway have been demonstrated.
Collapse
Affiliation(s)
- Qi-Ping Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Yang Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - An-Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Yanbo Yu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Jie Tong
- School of Medicine
- Yale University
- New Haven
- USA
| | - Jiwei Gu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| |
Collapse
|
23
|
Li J, Xi W, Zhong R, Yang J, Wang L, Ding H, Wang Z. HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes. Chem Commun (Camb) 2021; 57:1050-1053. [DOI: 10.1039/d0cc06980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hexafluoroisopropanol (HFIP)-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes is developed.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Wenxue Xi
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Hanfeng Ding
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| |
Collapse
|
24
|
Su YL, Tram L, Wherritt D, Arman H, Griffith WP, Doyle MP. α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel Wherritt
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Abozeid MA, Kim HY, Oh K. Divergent Halogenation Pathways of 2,2‐Dichlorobut‐3‐yn‐1‐ols to 3‐Chloro‐4‐Iodofurans and α‐Chloro‐γ‐Iodoallenes: Electrophilic versus Pd(II)‐Catalyzed Halogenation Strategies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohamed Ahmed Abozeid
- Center for Metareceptome Research Graduate School of Pharmaceutical Sciences Chung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs Chung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research Graduate School of Pharmaceutical Sciences Chung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| |
Collapse
|
26
|
Touqeer S, Senatore R, Malik M, Urban E, Pace V. Modular and Chemoselective Strategy for Accessing (Distinct) α,α‐Dihaloketones from Weinreb Amides and Dihalomethyllithiums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saad Touqeer
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Raffaele Senatore
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Monika Malik
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Ernst Urban
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Vittorio Pace
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
27
|
Song H, Cheng R, Min QQ, Zhang X. Decarboxylative and Deaminative Alkylation of Difluoroenoxysilanes via Photoredox Catalysis: A General Method for Site-Selective Synthesis of Difluoroalkylated Alkanes. Org Lett 2020; 22:7747-7751. [PMID: 32946242 DOI: 10.1021/acs.orglett.0c02997] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A general method for site-selective difluoroalkylation of alkyl carboxylic redox esters with difluoroenoxysilanes through photoredox-catalyzed decarboxylative reaction has been developed. The reaction can also be extended to aliphatic amine derived pyridinium salts. This method has the advantages of high efficiency, mild reaction conditions, and broad substrate scope, including primary, secondary, and sterically hindered tertiaryl alkyl substrates, providing a general and practical route for applications in organic synthesis and pharmaceutical studies.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Cheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xingang Zhang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
28
|
Shao N, Rodriguez J, Quintard A. Redox-Neutral 1,3-Diol Synthesis by Base-Promoted Diastereoselective Alcohol–Aldolization. Org Lett 2020; 22:7197-7201. [DOI: 10.1021/acs.orglett.0c02536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| |
Collapse
|