1
|
Shang J, Wang Z, Sun C, Wang R, Hua X, Feng L, Yuan C, Liu Z, Zhang HL, Xu J, Shao X. Spiro-Buckybowls: Synthesis and Selective Transformations Toward Chiral and Nonlinear Optical Polycycles. Angew Chem Int Ed Engl 2024; 63:e202414231. [PMID: 39136326 DOI: 10.1002/anie.202414231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
Integration of spirocycles with buckybowls is a promising strategy to construct three-dimensional (3D) curved π-systems and to endow distinctive physicochemical features arising from buckybowls. Herein, a series of carbon-bridged spiro-type heterosumanenes (spiro-HSEs) were synthesized by combining 9,9'-spirobifluorene and dichalcogenasumanenes (DCSs). It is found that spiro-conjugation plays an important role in the geometric and electronic structures of spiro-HSEs. The bowl depth of DCSs moiety becomes larger in the spiro-HSEs. Owing to the Jahn-Teller (J-T) effect, two DCSs segments of spiro-HSEs have different bowl depths accompanied with the unequal distribution of charge in radical cation state. Taking advantage of the typical reactions of DCSs, selective transformations of spiro-HSEs have been adopted in accordance to the nature of chalcogen atoms (S, Se, Te) to bestow the value-added functionalities. The emissive property is enhanced by converting the thiophene rings of S-doped spiro-HSE into thiophene S,S-dioxides. A chiroptical polycycle could be produced by ring-opening of the edge benzene of Se-doped spiro-HSE. The covalent adduct of Te-doped spiro-HSE with Br2 forms non-centrosymmetric halogen-bonded networks, resulting in the high performance second-order nonlinear optics (NLO).
Collapse
Affiliation(s)
- Jihai Shang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Chunlin Sun
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Renjie Wang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Lijun Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Wu L, Li Y, Hua X, Ye L, Yuan C, Liu Z, Zhang HL, Shao X. Radical Cation Salts of Hetera-Buckybowls: Polar Crystals, Negative Thermal Expansion and Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202319587. [PMID: 38226832 DOI: 10.1002/anie.202319587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.
Collapse
Affiliation(s)
- Lingxi Wu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Yecheng Li
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Lei Ye
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
3
|
Wang X, Hua X, Zhang H, Wu L, Yuan C, Liu Z, Zhang HL, Shao X. Transforming Hetera-Buckybowls into Chiral Conjugated Polycycles Incorporating Epoxycyclooctadiene: a Two-Step Approach. Chemistry 2023; 29:e202303085. [PMID: 37877318 DOI: 10.1002/chem.202303085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.
Collapse
Affiliation(s)
- Xue Wang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Haomin Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Lingxi Wu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xiangfeng Shao
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
4
|
Shang J, Wang R, Yuan C, Liu Z, Zhang H, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022; 61:e202117504. [DOI: 10.1002/anie.202117504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Renjie Wang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| |
Collapse
|
5
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
6
|
Shang J, Wang R, Yuan C, Liu Z, Zhang HL, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Renjie Wang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Chengshan Yuan
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Zitong Liu
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Hao-Li Zhang
- Lanzhou University State key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Xiangfeng Shao
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 222 Tianshui Southern Road 730000 Lanzhou CHINA
| |
Collapse
|
7
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Wang W, Feng L, Hua X, Yuan C, Shao X. Stimuli‐Responsive
Polycycles Based on
Hetero‐Buckybowl
Trithiasumanene. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Lijun Feng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| |
Collapse
|
9
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
10
|
Liu Z, Song W, Yan C, Liu Z, Zhang HL, Shao X. Transforming electron-rich hetero-buckybowls into electron-deficient polycycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00702e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidation of trichalcogenasumanenes (TCSs) with NO species results in the simultaneous formation of ortho-quinone and diester groups. This reaction enables the transformation of electron-rich TCSs into electron-deficient polycycles.
Collapse
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| |
Collapse
|
11
|
Alvi S, Ali R. Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners. Beilstein J Org Chem 2020; 16:2212-2259. [PMID: 32983269 PMCID: PMC7492699 DOI: 10.3762/bjoc.16.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/24/2023] Open
Abstract
Since the first synthetic report in 2003 by Sakurai et al., sumanene (derived from the Indian 'Hindi as well as Sanskrit word' "Suman", which means "Sunflower"), a beautifully simple yet much effective bowl-shaped C 3-symmetric polycyclic aromatic hydrocarbon having three benzylic positions clipped between three phenyl rings in the triphenylene framework has attracted a tremendous attention of researchers worldwide. Therefore, since its first successful synthesis, a variety of functionalized sumanenes as well as heterosumanenes have been developed because of their unique physiochemical properties. For example, bowl-to-bowl inversion, bowl depth, facial selectivity, crystal packing, metal complexes, intermolecular charge transfer systems, cation-π complexation, electron conductivity, optical properties and so on. Keeping the importance of this beautiful scaffold in mind, we compiled all the synthetic routes available for the construction of sumanene and its heteroatom derivatives including Mehta's first unsuccessful effort up to the latest achievements. Our major goal to write this review article was to provide a quick summary of where the field has been, where it stands at present, and where it might be going in near future. Although several reviews have been published on sumanene chemistry dealing with different aspects but this is the first report that comprehensively describes the 'all-in-one' chemistry of the sumanene architecture since its invention to till date. We feel that this attractive review article will definitely help the scientific community working not only in the area of organic synthesis but also in materials science and technology.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| |
Collapse
|