1
|
Liu Z, Hu Y, Wang S, Ding Y, Zhang Z, Qiu YF, Liu Z, Lei J. Visible-light-driven catalyst-free C-S cross-coupling of thiol derivatives and aryl halides. Org Biomol Chem 2024. [PMID: 39420589 DOI: 10.1039/d4ob01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A mild, scalable, and high-yielding visible-light-promoted C-S cross-coupling between alkyl thiol derivatives and (hetero)aryl halides without the need for metals, ligands, or photocatalysts is reported, offering advantages over traditional C-S bond forming strategies. The formation of an electron donor-acceptor (EDA) complex is supported by experimental and computational mechanistic studies, which undergoes visible-light-induced charge transfer to initiate C-S bond formation in the absence of a photoredox catalyst.
Collapse
Affiliation(s)
- Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yansong Hu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Akana ME, Tcyrulnikov S, Akana-Schneider BD, Reyes GP, Monfette S, Sigman MS, Hansen EC, Weix DJ. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2024; 146:3043-3051. [PMID: 38276910 DOI: 10.1021/jacs.3c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)-C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2'-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parameterization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational ligand library, correlation of observed reaction outcomes with features of the ligands, and the in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a 5-fold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.
Collapse
Affiliation(s)
- Michelle E Akana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Akana-Schneider
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
5
|
Taylor OR, Saucedo PJ, Bahamonde A. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions. J Org Chem 2024. [PMID: 38231475 DOI: 10.1021/acs.joc.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This perspective details advances made in the field of Ni-catalyzed C-N bond formation. The use of this Earth abundant metal to decorate amines, amides, lactams, and heterocycles enables direct access to a variety of biologically active and industrially relevant compounds in a sustainable manner. Herein, different strategies that leverage the propensity of Ni to facilitate both one- and two-electron processes will be surveyed. The first part of this Perspective focuses on strategies that facilitate C-N couplings at room temperature by accessing oxidized Ni(III) intermediates. In this context, advances in photochemical, electrochemical, and chemically mediated processes will be analyzed. A special emphasis has been put on providing a comprehensive explanation of the different mechanistic avenues that have been proposed to facilitate these chemistries; either Ni(I/III) self-sustained cycles or Ni(0/II/III) photochemically mediated pathways. The second part of this Perspective details the ligand designs that also enable access to this reactivity via a two-electron Ni(0/II) mechanism. Finally, we discuss our thoughts on possible future directions of the field.
Collapse
Affiliation(s)
- Olivia R Taylor
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
7
|
Palkowitz MD, Emmanuel MA, Oderinde MS. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions. Acc Chem Res 2023; 56:2851-2865. [PMID: 37772915 DOI: 10.1021/acs.accounts.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
8
|
Dulov DA, Magdesieva TV. N, N'-Diaryldihydrophenazines as Visible-Light Photocatalysts for Anilines' Arylation Using a Dual Photoredox/Ni(II) Cross-Coupling Strategy. J Org Chem 2023; 88:12765-12775. [PMID: 37596978 DOI: 10.1021/acs.joc.3c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
It has been shown that cheap and easily available N,N'-diaryldihydrophenazines can successfully replace Ir(III)- and Ru(II)-based photocatalysts in the dual photoredox/Ni(II) C-N coupling of aryl halides with a wide range of anilines (32 examples). The efficient, operationally simple approach to diarylamines has been elaborated, which is amenable to scaling up via a flow apparatus.
Collapse
Affiliation(s)
- Dmitry A Dulov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia
| | - Tatiana V Magdesieva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia
| |
Collapse
|
9
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Ghosh I, Shlapakov N, Karl TA, Düker J, Nikitin M, Burykina JV, Ananikov VP, König B. General cross-coupling reactions with adaptive dynamic homogeneous catalysis. Nature 2023:10.1038/s41586-023-06087-4. [PMID: 37316657 DOI: 10.1038/s41586-023-06087-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/14/2023] [Indexed: 06/16/2023]
Abstract
Cross-coupling reactions are among the most important transformations in modern organic synthesis1-3. Although the range of reported (het)aryl halides and nucleophile coupling partners is very large considering various protocols, the reaction conditions vary considerably between compound classes, necessitating renewed case-by-case optimization of the reaction conditions4. Here we introduce adaptive dynamic homogeneous catalysis (AD-HoC) with nickel under visible-light-driven redox reaction conditions for general C(sp2)-(hetero)atom coupling reactions. The self-adjustive nature of the catalytic system allowed the simple classification of dozens of various classes of nucleophiles in cross-coupling reactions. This is synthetically demonstrated in nine different bond-forming reactions (in this case, C(sp2)-S, Se, N, P, B, O, C(sp3, sp2, sp), Si, Cl) with hundreds of synthetic examples under predictable reaction conditions. The catalytic reaction centre(s) and conditions differ from one another by the added nucleophile, or if required, a commercially available inexpensive amine base.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany.
| | - Nikita Shlapakov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tobias A Karl
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany
| | - Jonas Düker
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany
| | - Maksim Nikitin
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Chrisman CH, Kudisch M, Puffer KO, Stewart TK, Lamb YML, Lim CH, Escobar R, Thordarson P, Johannes JW, Miyake GM. Halide Noninnocence and Direct Photoreduction of Ni(II) Enables Coupling of Aryl Chlorides in Dual Catalytic, Carbon-Heteroatom Bond-Forming Reactions. J Am Chem Soc 2023; 145:12293-12304. [PMID: 37204458 PMCID: PMC10786213 DOI: 10.1021/jacs.3c02784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent mechanistic studies of dual photoredox/Ni-catalyzed, light-driven cross-coupling reactions have found that the photocatalyst (PC) operates through either reductive quenching or energy transfer cycles. To date, reports invoking oxidative quenching cycles are comparatively rare and direct observation of such a quenching event has not been reported. However, when PCs with highly reducing excited states are used (e.g., Ir(ppy)3), photoreduction of Ni(II) to Ni(I) is thermodynamically feasible. Recently, a unified reaction system using Ir(ppy)3 was developed for forming C-O, C-N, and C-S bonds under the same conditions, a prospect that is challenging with PCs that can photooxidize these nucleophiles. Herein, in a detailed mechanistic study of this system, we observe oxidative quenching of the PC (Ir(ppy)3 or a phenoxazine) via nanosecond transient absorption spectroscopy. Speciation studies support that a mixture of Ni-bipyridine complexes forms under the reaction conditions, and the rate constant for photoreduction increases when more than one ligand is bound. Oxidative addition of an aryl iodide was observed indirectly via oxidation of the resulting iodide by Ir(IV)(ppy)3. Intriguingly, the persistence of the Ir(IV)/Ni(I) ion pair formed in the oxidative quenching step was found to be necessary to simulate the observed kinetics. Both bromide and iodide anions were found to reduce the oxidized form of the PC back to its neutral state. These mechanistic insights inspired the addition of a chloride salt additive, which was found to alter Ni speciation, leading to a 36-fold increase in the initial turnover frequency, enabling the coupling of aryl chlorides.
Collapse
Affiliation(s)
- Cameron H Chrisman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Max Kudisch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Trevor K Stewart
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yisrael M L Lamb
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, Colorado 81301, United States
| | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium LLC, Boulder, Colorado 80303, United States
| | - Randolph Escobar
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the UNSW RNA Institute, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Jeffrey W Johannes
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Sahari A, Puumi J, Mannisto JK, Repo T. Dual Nickel Photocatalysis for O-Aryl Carbamate Synthesis from Carbon Dioxide. J Org Chem 2023; 88:3822-3829. [PMID: 36848485 PMCID: PMC10028690 DOI: 10.1021/acs.joc.3c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We report the use of dual nickel photocatalysis in the synthesis of O-aryl carbamates from aryl iodides or bromides, amines, and carbon dioxide. The reaction proceeded in visible light, at ambient carbon dioxide pressure, and without stoichiometric activating reagents. Mechanistic analysis is consistent with a Ni(I-III) cycle, where the active species is generated by the photocatalyst. The rate-limiting steps were the photocatalyst-mediated reduction of Ni(II) to Ni(I) and subsequent oxidative addition of the aryl halide. The physical properties of the photocatalyst were critical for promoting formation of O-aryl carbamates over various byproducts. Nine new phthalonitrile photocatalysts were synthesized, which exhibited properties that were vital to achieve high selectivity and activity.
Collapse
Affiliation(s)
- Aleksi Sahari
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jukka Puumi
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jere K Mannisto
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Timo Repo
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Lee J, Song WJ. Photocatalytic C-O Coupling Enzymes That Operate via Intramolecular Electron Transfer. J Am Chem Soc 2023; 145:5211-5221. [PMID: 36825656 DOI: 10.1021/jacs.2c12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Efficient and environmentally friendly conversion of light energy for direct utilization in chemical production has been a long-standing goal in enzyme design. Herein, we synthesized artificial photocatalytic enzymes by introducing an Ir photocatalyst and a Ni(bpy) complex to an optimal protein scaffold in close proximity. Consequently, the enzyme generated C-O coupling products with up to 96% yields by harvesting visible light and performing intramolecular electron transfer between the two catalysts. We systematically modulated the catalytic activities of the artificial photocatalytic cross-coupling enzymes by tuning the electrochemical properties of the catalytic components, their positions, and distances within a protein. As a result, we discovered the best-performing mutant that showed broad substrate scopes under optimized conditions. This work explicitly demonstrated that we could integrate and control both the inorganic and biochemical components of photocatalytic biocatalysis to achieve high yield and selectivity in valuable chemical transformations.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Song G, Nong DZ, Li Q, Yan Y, Li G, Fan J, Zhang W, Cao R, Wang C, Xiao J, Xue D. Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
15
|
Song G, Nong DZ, Li JS, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis. J Org Chem 2022; 87:10285-10297. [PMID: 35877165 DOI: 10.1021/acs.joc.2c01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Buchwald-Hartwig C-N coupling reaction has been ranked as one of the 20 most frequently used reactions in medicinal chemistry. Owing to its much lower cost and higher reactivity toward less reactive aryl chlorides than palladium, the C-N coupling reaction catalyzed by Ni-based catalysts has received a great deal of attention. However, there appear to be no universal, practical Ni catalytic systems so far that could enable the coupling of electron-rich and electron-poor aryl halides with both primary and secondary alkyl amines. In this study, it is reported that a Ni(II)-bipyridine complex catalyzes efficient C-N coupling of aryl chlorides and bromides with various primary and secondary alkyl amines under direct excitation with light. Intramolecular C-N coupling is also demonstrated. The feasibility and applicability of the protocol in organic synthesis is attested by more than 200 examples.
Collapse
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing-Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
16
|
Gravatt CS, Johannes JW, King ER, Ghosh A. Photoredox-Mediated, Nickel-Catalyzed Trifluoromethylthiolation of Aryl and Heteroaryl Iodides. J Org Chem 2022; 87:8921-8927. [PMID: 35786936 DOI: 10.1021/acs.joc.2c00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While trifluoromethylthiolation of aryl halides has been extensively explored, the current methods require complex and/or air-sensitive catalysts. Reported here is a method employing a bench-stable Ni(II) salt and an iridium photocatalyst that can mediate the trifluoromethylthiolation of a wide range of electronically diverse aryl and heteroaryl iodides, likely via a Ni(I)/Ni(III) catalytic cycle. The reaction has broad functional group tolerance and potential for application in medicinal chemistry, as demonstrated by a late-stage functionalization approach to access (racemic)-Monepantel.
Collapse
Affiliation(s)
- Christopher S Gravatt
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jeffrey W Johannes
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Eric R King
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Avipsa Ghosh
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
17
|
Jati A, Dey K, Nurhuda M, Addicoat MA, Banerjee R, Maji B. Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C-N Cross-Coupling Reactions. J Am Chem Soc 2022; 144:7822-7833. [PMID: 35446576 DOI: 10.1021/jacs.2c01814] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covalent organic frameworks (COFs) are promising hosts in heterogeneous catalysis. Herein, we report a dual metalation strategy in a single two-dimensional-COF TpBpy for performing a variety of C-N cross-coupling reactions. [Ir(ppy)2(CH3CN)2]PF6 [ppy = 2-phenylpyridine], containing two labile CH3CN groups, and NiCl2 are used as iridium and nickel-metal precursors, respectively, for postsynthetic decoration of the TpBpy COF. Moving from the traditional approach, we focus on the COF-backbone host for visible-light-mediated nickel-catalyzed C-N coupling reactions. The controlled metalation and recyclability without deactivation of both catalytic centers are unique with respect to previously reported coupling strategies. We performed various photoluminescence, electrochemical, kinetic, and Hammett correlation studies to understand the salient features of the catalyst and reaction mechanism. Furthermore, theoretical calculations delineated the feasibility of electron transfer from the Ir center to the Ni center inside the confined pore of the TpBpy COF. The dual metal anchoring within the COF backbone prevented nickel-black formation. The developed protocol enables selective and reproducible coupling of a diverse range of amines (aryl, heteroaryl, and alkyl), carbamides, and sulfonamides with electron-rich, neutral, and poor (hetero) aryl iodides up to 94% isolated yield. The reaction can also be performed on a gram scale. Furthermore, to establish the practical implementation of this approach, we have applied the synthetic strategy for the late-stage diversification of the derivatives of ibuprofen, naproxen, gemfibrozil, helional, and amino acids. The methodology could also be applied to synthesize pharmacophore N,5-diphenyloxazol-2-amine and Food and Drug Administration-approved drugs, including flufenamic acid, flibanserin, and tripelennamine.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Maryam Nurhuda
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
18
|
Tassone JP, Lundrigan T, Ashton TD, Stradiotto M. Nickel-Catalyzed C-N Cross-Coupling of 4-Chloro-1,8-naphthalimides and Bulky, Primary Alkylamines at Room Temperature. J Org Chem 2022; 87:6492-6498. [PMID: 35442025 DOI: 10.1021/acs.joc.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Amino-1,8-naphthalimides, potentially useful fluorescent probes in biological applications, are prepared via Ni(cod)2/IPr-catalyzed cross-couplings between 4-chloro-1,8-naphthalimide electrophiles and α,α,α-trisubstituted, primary alkylamines at room temperature. This method represents the first synthesis of 4-amino-1,8-naphthalimides using Ni-catalyzed C-N cross-coupling and provides the first examples of 4-amino-1,8-naphthalimides incorporating such bulky primary alkylamines, thereby highlighting the utility of Ni-catalyzed processes in synthesizing naphthalimide scaffolds that were inaccessible using established methods (SNAr; Pd or Cu catalysis).
Collapse
Affiliation(s)
- Joseph P Tassone
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Travis Lundrigan
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
19
|
Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand. Nat Commun 2022; 13:1313. [PMID: 35288558 PMCID: PMC8921334 DOI: 10.1038/s41467-022-28948-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligands RN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests the RN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. Mechanistic knowledge of photocatalytic nickel reactions is lacking, particularly with regards to the identities and oxidation states of key intermediates. Here the authors report a class of tridentate ligands that enables in-depth study of a representative cross-coupling reaction, wherein evidence for multiple intermediates in a Ni(I/III) cycle is presented.
Collapse
|
20
|
Zheng W, Xu Y, Lin L. Nickel‐Catalyzed Thioesterification Enabled by a Visible‐Light Organophotoredox Catalyst under Mild Conditions. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wanyao Zheng
- Zhangdayu School of Chemistry Dalian University of Technology No. 2 Linggong Road, Gangjingzi District Dalian 116024 Liaoning China
| | - Yongjie Xu
- Zhangdayu School of Chemistry Dalian University of Technology No. 2 Linggong Road, Gangjingzi District Dalian 116024 Liaoning China
| | - Luqing Lin
- Zhangdayu School of Chemistry Dalian University of Technology No. 2 Linggong Road, Gangjingzi District Dalian 116024 Liaoning China
- Global Station for Biosurfaces and Drug Discovery Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University Kita-12 Nishi-6 Sapporo Hokkaido 060-0812 Japan
| |
Collapse
|
21
|
Zha GJ, Ji W, Qi ZH, Qiu WJ, Li AM, Zhu DR, Jing S. Microenvironment modulation of cuprous cluster enables inert aryl chlorides activation in single-molecule metallaphotoredox amination. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Zhu Y, Zu W, Tian Q, Cao Z, Wei Y, Xu L. A nickel/organoboron catalyzed metallaphotoredox platform for C(sp 2)–P and C(sp 2)–S bond construction. Org Chem Front 2022. [DOI: 10.1039/d1qo01778k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A boron-based organic photocatalyst has been applied in metallaphotoredox catalyzed C–P and C–S bond construction reactions.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Qing Tian
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Zifeng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
23
|
Shin J, Lee J, Suh JM, Park K. Ligand-field transition-induced C-S bond formation from nickelacycles. Chem Sci 2021; 12:15908-15915. [PMID: 35024114 PMCID: PMC8672709 DOI: 10.1039/d1sc05113j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
Photoexcitation is one of the acknowledged methods to activate Ni-based cross-coupling reactions, but factors that govern the photoactivity of organonickel complexes have not yet been established. Here we report the excited-state cross-coupling activities of Ni(ii) metallacycle compounds, which display ∼104 times enhancement for the C-S bond-forming reductive elimination reaction upon Ni-centered ligand-field transitions. The effects of excitation energy and ancillary ligands on photoactivity have been investigated with 17 different nickelacycle species in combination with four corresponding acyclic complexes. Spectroscopic and computational electronic structural characterizations reveal that, regardless of coordinated species, d-d transitions can induce Ni-C bond homolysis, and that the reactivity of the resulting Ni(i) species determines the products of the overall reaction. The photoactivity mechanism established in this study provides general insights into the excited-state chemistry of organonickel(ii) complexes.
Collapse
Affiliation(s)
- Jeongcheol Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiseon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
24
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
25
|
Zhang H, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Chemoselective, Scalable Nickel‐Electrocatalytic
O
‐Arylation of Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hai‐Jun Zhang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Longrui Chen
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Martins S. Oderinde
- Department of Discovery Synthesis Bristol Myers Squibb Research & Early Development Princeton NJ 08540 USA
| | | | - Yu Kawamata
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
26
|
Zhang HJ, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Chemoselective, Scalable Nickel-Electrocatalytic O-Arylation of Alcohols. Angew Chem Int Ed Engl 2021; 60:20700-20705. [PMID: 34288303 PMCID: PMC8429144 DOI: 10.1002/anie.202107820] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Indexed: 11/12/2022]
Abstract
The formation of aryl-alkyl ether bonds through cross coupling of alcohols with aryl halides represents a useful strategic departure from classical SN 2 methods. Numerous tactics relying on Pd-, Cu-, and Ni-based catalytic systems have emerged over the past several years. Herein we disclose a Ni-catalyzed electrochemically driven protocol to achieve this useful transformation with a broad substrate scope in an operationally simple way. This electrochemical method does not require strong base, exogenous expensive transition metal catalysts (e.g., Ir, Ru), and can easily be scaled up in either a batch or flow setting. Interestingly, e-etherification exhibits an enhanced substrate scope over the mechanistically related photochemical variant as it tolerates tertiary amine functional groups in the alcohol nucleophile.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Longrui Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research & Early Development, Princeton, NJ, 08540, USA
| | | | - Yu Kawamata
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
27
|
Zhu C, Yue H, Jia J, Rueping M. Nickel-Catalyzed C-Heteroatom Cross-Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021; 60:17810-17831. [PMID: 33252192 DOI: 10.1002/anie.202013852] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The formation of C-heteroatom bonds represents an important type of bond-forming reaction in organic synthesis and often provides a fast and efficient access to privileged structures found in pharmaceuticals, agrochemical and materials. In contrast to conventional Pd- or Cu-catalyzed C-heteroatom cross-couplings under high-temperature conditions, recent advances in homo- and heterogeneous Ni-catalyzed C-heteroatom formations under mild conditions are particularly attractive from the standpoint of sustainability and practicability. The generation of NiIII and excited NiII intermediates facilitate the reductive elimination step to achieve mild cross-couplings. This review provides an overview of the state-of-the-art approaches for mild C-heteroatom bond formations and highlights the developments in photoredox and nickel dual catalysis involving SET and energy transfer processes; photoexcited nickel catalysis; electro and nickel dual catalysis; heterogeneous photoredox and nickel dual catalysis involving graphitic carbon nitride (mpg-CN), metal organic frameworks (MOFs) or semiconductor quantum dots (QDs); as well as more conventional zinc and nickel dual catalyzed reactions.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
Zhou J, Zhu Y. Forging C−S(Se) Bonds by Nickel‐catalyzed Decarbonylation of Carboxylic Acid and Cleavage of Aryl Dichalcogenides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing‐Ya Zhou
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yong‐Ming Zhu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
29
|
Zhu C, Yue H, Jia J, Rueping M. Nickel‐Catalyzed C‐Heteroatom Cross‐Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013852] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
30
|
Yabuta T, Hayashi M, Matsubara R. Photocatalytic Reductive C-O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate. J Org Chem 2021; 86:2545-2555. [PMID: 33439026 DOI: 10.1021/acs.joc.0c02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered < -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.
Collapse
Affiliation(s)
- Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
31
|
Hashimoto T, Shiota K, Funatsu K, Yamaguchi Y. Cross‐Coupling Reactions of Aryl Halides with Primary and Secondary Aliphatic Alcohols Catalyzed by an
O
,
N
,
N
‐Coordinated Nickel Complex. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Kei Funatsu
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| |
Collapse
|
32
|
Bortnikov EO, Semenov SN. Coupling of Alternating Current to Transition-Metal Catalysis: Examples of Nickel-Catalyzed Cross-Coupling. J Org Chem 2020; 86:782-793. [PMID: 33186048 PMCID: PMC7783731 DOI: 10.1021/acs.joc.0c02350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
coupling of transition-metal to photoredox catalytic cycles
through single-electron transfer steps has become a powerful tool
in the development of catalytic processes. In this work, we demonstrated
that transition-metal catalysis can be coupled to alternating current
(AC) through electron transfer steps that occur periodically at the
same electrode. AC-assisted Ni-catalyzed amination, etherification,
and esterification of aromatic bromides showed higher yields and selectivity
compared to that observed in the control experiments with direct current.
Our mechanistic studies suggested the importance of both reduction
and oxidation processes in the maintenance of the AC-assisted catalytic
reactions. As described in presented examples, the AC assistance should
be well-suited for catalytic cycles involving reductive elimination
or oxidative addition as a limiting step.
Collapse
Affiliation(s)
- Evgeniy O Bortnikov
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sergey N Semenov
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
33
|
Xiong B, Li Y, Wei Y, Kramer S, Lian Z. Dual Nickel-/Palladium-Catalyzed Reductive Cross-Coupling Reactions between Two Phenol Derivatives. Org Lett 2020; 22:6334-6338. [PMID: 32806164 DOI: 10.1021/acs.orglett.0c02165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance of phenols. Here, we report a dual nickel-/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2'-disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allows for straightforward late-stage functionalization, illustrated with examples such as ezetimibe and tyrosine.
Collapse
Affiliation(s)
- Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Gisbertz S, Reischauer S, Pieber B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat Catal 2020. [DOI: 10.1038/s41929-020-0473-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Zu W, Day C, Wei L, Jia X, Xu L. Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon-oxygen bond construction. Chem Commun (Camb) 2020; 56:8273-8276. [PMID: 32568331 DOI: 10.1039/d0cc03230a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, aminoquinolate diarylboron complexes are utilized as photocatalysts in dual Ni/photoredox catalyzed carbon-oxygen construction reactions. Via this unified metallaphotoredox platform, diverse (hetero)aryl halides can be conveniently coupled with acids, alcohols and water. This method features operational simplicity, broad substrate scope and good compatibility with functional groups.
Collapse
Affiliation(s)
- Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | |
Collapse
|