1
|
Gigli L, Silva JM, Cerofolini L, Macedo AL, Geraldes CFGC, Suturina EA, Calderone V, Fragai M, Parigi G, Ravera E, Luchinat C. Machine Learning-Enhanced Quantum Chemistry-Assisted Refinement of the Active Site Structure of Metalloproteins. Inorg Chem 2024; 63:10713-10725. [PMID: 38805564 DOI: 10.1021/acs.inorgchem.4c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Understanding the fine structural details of inhibitor binding at the active site of metalloenzymes can have a profound impact on the rational drug design targeted to this broad class of biomolecules. Structural techniques such as NMR, cryo-EM, and X-ray crystallography can provide bond lengths and angles, but the uncertainties in these measurements can be as large as the range of values that have been observed for these quantities in all the published structures. This uncertainty is far too large to allow for reliable calculations at the quantum chemical (QC) levels for developing precise structure-activity relationships or for improving the energetic considerations in protein-inhibitor studies. Therefore, the need arises to rely upon computational methods to refine the active site structures well beyond the resolution obtained with routine application of structural methods. In a recent paper, we have shown that it is possible to refine the active site of cobalt(II)-substituted MMP12, a metalloprotein that is a relevant drug target, by matching to the experimental pseudocontact shifts (PCS) those calculated using multireference ab initio QC methods. The computational cost of this methodology becomes a significant bottleneck when the starting structure is not sufficiently close to the final one, which is often the case with biomolecular structures. To tackle this problem, we have developed an approach based on a neural network (NN) and a support vector regression (SVR) and applied it to the refinement of the active site structure of oxalate-inhibited human carbonic anhydrase 2 (hCAII), another prototypical metalloprotein target. The refined structure gives a remarkably good agreement between the QC-calculated and the experimental PCS. This study not only contributes to the knowledge of CAII but also demonstrates the utility of combining machine learning (ML) algorithms with QC calculations, offering a promising avenue for investigating other drug targets and complex biological systems in general.
Collapse
Affiliation(s)
- Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - José Malanho Silva
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Anjos L Macedo
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, 3000-393 Coimbra, Portugal
- Coimbra Chemistry Center─Institute of Molecular Sciences (CCC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Florence Data Science, University of Florence, Florence 50134, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Giotto Biotech, S.R.L., Sesto Fiorentino 50019, Italy
| |
Collapse
|
2
|
Wang W, Xi H, Fu D, Ma D, Gong W, Zhao Y, Li X, Wu L, Guo Y, Zhao G, Wang H. Growth Process of Fe-O Nanoclusters with Different Sizes Biosynthesized by Protein Nanocages. J Am Chem Soc 2024; 146:11657-11668. [PMID: 38641862 DOI: 10.1021/jacs.3c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.
Collapse
Affiliation(s)
- Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfang Xi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Danyang Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomei Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Lijie Wu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Bradley JM, Bugg Z, Sackey A, Andrews SC, Wilson MT, Svistunenko DA, Moore GR, Le Brun NE. The Ferroxidase Centre of Escherichia coli Bacterioferritin Plays a Key Role in the Reductive Mobilisation of the Mineral Iron Core. Angew Chem Int Ed Engl 2024; 63:e202401379. [PMID: 38407997 DOI: 10.1002/anie.202401379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zinnia Bugg
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Aaren Sackey
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
4
|
Shagidov D, Guttmann-Raviv N, Cunat S, Frech L, Giansily-Blaizot M, Ghatpande N, Abelya G, Frank GA, Aguilar Martinez P, Meyron-Holtz EG. A newly identified ferritin L-subunit variant results in increased proteasomal subunit degradation, impaired complex assembly, and severe hypoferritinemia. Am J Hematol 2024; 99:12-20. [PMID: 37867341 DOI: 10.1002/ajh.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Ferritin is a hetero-oligomeric nanocage, composed of 24 subunits of two types, FTH1 and FTL. It protects the cell from excess reactive iron, by storing iron in its cavity. FTH1 is essential for the recruitment of iron into the ferritin nanocage and for cellular ferritin trafficking, whereas FTL contributes to nanocage stability and iron nucleation inside the cavity. Here we describe a female patient with a medical history of severe hypoferritinemia without anemia. Following inadequate heavy IV iron supplementation, the patient developed severe iron overload and musculoskeletal manifestations. However, her serum ferritin levels rose only to normal range. Genetic analyses revealed an undescribed homozygous variant of FTL (c.92A > G), which resulted in a Tyr31Cys substitution (FTLY31C ). Analysis of the FTL structure predicted that the Y31C mutation will reduce the variant's stability. Expression of the FTLY31C variant resulted in significantly lower cellular ferritin levels compared with the expression of wild-type FTL (FTLWT ). Proteasomal inhibition significantly increased the initial levels of FTLY31C , but could not protect FTLY31C subunits from successive degradation. Further, variant subunits successfully incorporated into hetero-polymeric nanocages in the presence of sufficient levels of FTH1. However, FTLY31C subunits poorly assembled into nanocages when FTH1 subunit levels were low. These results indicate an increased susceptibility of unassembled monomeric FTLY31C subunits to proteasomal degradation. The decreased cellular assembly of FTLY31C -rich nanocages may explain the low serum ferritin levels in this patient and emphasize the importance of a broader diagnostic approach of hypoferritinemia without anemia, before IV iron supplementation.
Collapse
Affiliation(s)
- Dayana Shagidov
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Noga Guttmann-Raviv
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Séverine Cunat
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Liora Frech
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Muriel Giansily-Blaizot
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Niraj Ghatpande
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Gili Abelya
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabriel A Frank
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev - NIBN, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Patricia Aguilar Martinez
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Esther G Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| |
Collapse
|
5
|
Davila-Hernandez FA, Jin B, Pyles H, Zhang S, Wang Z, Huddy TF, Bera AK, Kang A, Chen CL, De Yoreo JJ, Baker D. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat Commun 2023; 14:8191. [PMID: 38097544 PMCID: PMC10721895 DOI: 10.1038/s41467-023-43608-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Biomolecules modulate inorganic crystallization to generate hierarchically structured biominerals, but the atomic structure of the organic-inorganic interfaces that regulate mineralization remain largely unknown. We hypothesized that heterogeneous nucleation of calcium carbonate could be achieved by a structured flat molecular template that pre-organizes calcium ions on its surface. To test this hypothesis, we design helical repeat proteins (DHRs) displaying regularly spaced carboxylate arrays on their surfaces and find that both protein monomers and protein-Ca2+ supramolecular assemblies directly nucleate nano-calcite with non-natural {110} or {202} faces while vaterite, which forms first in the absence of the proteins, is bypassed. These protein-stabilized nanocrystals then assemble by oriented attachment into calcite mesocrystals. We find further that nanocrystal size and polymorph can be tuned by varying the length and surface chemistry of the designed protein templates. Thus, bio-mineralization can be programmed using de novo protein design, providing a route to next-generation hybrid materials.
Collapse
Affiliation(s)
- Fatima A Davila-Hernandez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98105, USA
| | - Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zheming Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Timothy F Huddy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
6
|
Jobichen C, Ying Chong T, Rattinam R, Basak S, Srinivasan M, Choong YK, Pandey KP, Ngoc TB, Shi J, Angayarkanni J, Sivaraman J. Bacterioferritin nanocage structures uncover the biomineralization process in ferritins. PNAS NEXUS 2023; 2:pgad235. [PMID: 37529551 PMCID: PMC10388152 DOI: 10.1093/pnasnexus/pgad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and is involved in iron oxidation, storage, and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster and the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy (cryo-EM) structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the fourfold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison with those of the wild type and together explain the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.
Collapse
Affiliation(s)
| | - Tan Ying Chong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Rajesh Rattinam
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yeu Khai Choong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Kannu Priya Pandey
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tran Bich Ngoc
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jayaraman Angayarkanni
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | |
Collapse
|
7
|
Cosottini L, Zineddu S, Massai L, Ghini V, Turano P. 19F: A small probe for a giant protein. J Inorg Biochem 2023; 244:112236. [PMID: 37146532 DOI: 10.1016/j.jinorgbio.2023.112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Herein we describe a method for the efficient production (∼90% fluorination) of 5-F-Trp human H ferritin via the selective incorporation of 19F into the side chain of W93 using 5-fluoroindole as the fluorinated precursor of the amino acid. Human H ferritin is a nanocage composed of 24 identical subunits, each containing a single Trp belonging to a loop exposed on the external surface of the protein nanocage. This makes 5-F-Trp a potential probe for the study of intermolecular interactions in solution by exploiting its intrinsic fluorescence. More interestingly, albeit the large size of the cage (12 nm external diameter, ∼500 kDa molecular mass) we observe a broad but well defined NMR 19F resonance that can be used for the dual purpose of detecting solution intermolecular interactions via chemical shift perturbation mapping and monitoring the uptake of ferritin by cells treated with ferritin-based drug carriers, the latter being an application area of increasing importance.
Collapse
Affiliation(s)
- Lucrezia Cosottini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Stefano Zineddu
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy.
| |
Collapse
|
8
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
|
10
|
Morphological difference of Escherichia coli non-heme ferritin iron cores reconstituted in the presence and absence of inorganic phosphate. J Biol Inorg Chem 2022; 27:583-594. [DOI: 10.1007/s00775-022-01952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
|
11
|
Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biominerals are extraordinary materials that provide organisms with a variety of functions to support life. The synthesis of biominerals and organization at the macroscopic level is a consequence of the interactions of these materials with proteins. The association of biominerals and proteins is very ancient and has sparked a wealth of research across biological, medical and material sciences. Calcium carbonate, hydroxyapatite, and silica represent widespread natural biominerals. The atomic details of the interface between macromolecules and these biominerals is very intriguing from a chemical perspective, considering the association of chemical entities that are structurally different. With this review I provide an overview of the available structural studies of biomineralization proteins, explored from the Protein Data Bank (wwPDB) archive and scientific literature, and of how these studies are inspiring the design and engineering of proteins able to synthesize novel biominerals. The progression of this review from classical template proteins to silica polymerization seeks to benefit researchers involved in various interdisciplinary aspects of a biomineralization project, who need background information and a quick update on advances in the field. Lessons learned from structural studies are exemplary and will guide new projects for the imaging of new hybrid biomineral/protein superstructures at the atomic level.
Collapse
|
12
|
Conti L, Ciambellotti S, Giacomazzo GE, Ghini V, Cosottini L, Puliti E, Severi M, Fratini E, Cencetti F, Bruni P, Valtancoli B, Giorgi C, Turano P. Ferritin nanocomposites for the selective delivery of photosensitizing ruthenium-polypyridyl compounds to cancer cells. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01268a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human ferritin platforms containing Ru(ii)-polypyridyl-based photosensitizers effectively target cancer cells and provide cytotoxic effects upon light-activation.
Collapse
Affiliation(s)
- Luca Conti
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Silvia Ciambellotti
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Veronica Ghini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Lucrezia Cosottini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Elisa Puliti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Emiliano Fratini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Barbara Valtancoli
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
13
|
Bradley JM, Fair J, Hemmings AM, Le Brun NE. Key carboxylate residues for iron transit through the prokaryotic ferritin SynFtn. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34825885 PMCID: PMC8743623 DOI: 10.1099/mic.0.001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ferritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Joshua Fair
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
14
|
Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A. Direct detection of iron clusters in L ferritins through ESI-MS experiments. Dalton Trans 2021; 50:16464-16467. [PMID: 34729572 DOI: 10.1039/d1dt03106f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
15
|
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin. Chemistry 2021; 27:14690-14701. [PMID: 34343376 DOI: 10.1002/chem.202102270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Mangani
- Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| |
Collapse
|
16
|
Ikenoue Y, Tahara YO, Miyata M, Nishioka T, Aono S, Nakajima H. Use of a Ferritin L134P Mutant for the Facile Conjugation of Prussian Blue in the Apoferritin Cavity. Inorg Chem 2021; 60:4693-4704. [PMID: 33733771 DOI: 10.1021/acs.inorgchem.0c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the bullfrog H-ferritin L134P mutant in which leucine 134 is replaced with proline was found to exhibit a flexible conformation in the C3 axis channel, homologous ferritins with the corresponding mutation have often been studied in terms of a mechanism of iron release from the mineral core within the protein cavity. Meanwhile, a ferritin mutant with the flexible channel is an attractive material in developing a method to encapsulate functional molecules larger than mononuclear ions into the protein cavity. This study describes the clathrate with a horse spleen L-ferritin L134P mutant containing Prussian blue (PB) without a frequently used technique, disassembly and reassembly of the protein subunits. The spherical shell of ferritin was confirmed in a TEM image of the clathrate. The produced clathrate (PB@L134P) was soluble in water and reproduced the spectroscopic and electrochemical properties of PB prepared using the conventional method. The catalytic activity for an oxidoreductive reaction with H2O2, one of the major applications of conventional PB, was also observed for the clathrate. The instability of PB in alkaline solutions, limiting its wide applications in aqueous media, was significantly improved in PB@L134P, showing the protective effect of the protein shell. The method developed here shows that horse spleen L-ferritin L134P is a useful scaffold to produce clathrates of three-dimensional complexes with ferritin.
Collapse
Affiliation(s)
- Yuta Ikenoue
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O Tahara
- Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Miyata
- Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takanori Nishioka
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
17
|
Davidov G, Abelya G, Zalk R, Izbicki B, Shaibi S, Spektor L, Shagidov D, Meyron-Holtz EG, Zarivach R, Frank GA. Folding of an Intrinsically Disordered Iron-Binding Peptide in Response to Sedimentation Revealed by Cryo-EM. J Am Chem Soc 2020; 142:19551-19557. [PMID: 33166133 PMCID: PMC7677926 DOI: 10.1021/jacs.0c07565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.
Collapse
Affiliation(s)
- Geula Davidov
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Gili Abelya
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Ran Zalk
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Benjamin Izbicki
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Sharon Shaibi
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Lior Spektor
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Dayana Shagidov
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Esther G. Meyron-Holtz
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Raz Zarivach
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Gabriel A. Frank
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|