1
|
Warring L, Westendorff KS, Bennett MT, Nam K, Stewart BM, Dickie DA, Paolucci C, Gunnoe TB, Gilliard RJ. Carbodicarbene-Stibenium Ion-Mediated Functionalization of C(sp 3)-H and C(sp)-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202415070. [PMID: 39245628 DOI: 10.1002/anie.202415070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Main-group element-mediated C-H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3 (1) (pyCDC=bis-pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6-di-tert-butylpyridine to enable C(sp3)-H bond breaking to generate the stiba-methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2 (2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C-H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1 fashion, thereby weakening the C-H bond which can then be deprotonated by base in solution. Further, we show that 1 reacts with terminal alkynes in the presence of 2,6-di-tert-butylpyridine to enable C(sp)-H bond breaking to form stiba-alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2 (3 a-f). Compound 1 shows excellent specificity for the activation of the terminal C(sp)-H bond even across alkynes with diverse functionality. The resulting stiba-methylene nitrile and stiba-alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.
Collapse
Affiliation(s)
- Levi Warring
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| | - Karl S Westendorff
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Marc T Bennett
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Kijeong Nam
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Brennan M Stewart
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| |
Collapse
|
2
|
Kopp RO, Kleynemeyer SL, Groth LJ, Ernst MJ, Rupf SM, Weber M, Kershaw Cook LJ, Coles NT, Neale SE, Müller C. Highly selective, reversible water activation by P,N-cooperativity in pyridyl-functionalized phosphinines. Chem Sci 2024; 15:5496-5506. [PMID: 38638216 PMCID: PMC11023035 DOI: 10.1039/d3sc05930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Tetrapyridyl-functionalized phosphinines were prepared and structurally characterized. The donor-functionalized aromatic phosphorus heterocycles react highly selectively and even reversibly with water. Calculations reveal P,N-cooperativity for this process, with the flanking pyridyl groups serving to kinetically enhance the formal oxidative addition process of H2O to the low-coordinate phosphorus atom via H-bonding. Subsequent tautomerization forms 1,2-dihydrophosphinine derivatives, which can be quantitatively converted back to the phosphinine by applying vacuum, even at room temperature. This process can be repeated numerous times, without any sign of decomposition of the phosphinine. In the presence of CuI·SMe2, dimeric species of the type ([Cu2I2(phosphinine)]2) are formed, in which each phosphorus atom shows the less common μ2-bridging 2e--lone-pair-donation to two Cu(i)-centres. Our results demonstrate that fully unsaturated phosphorus heterocycles, containing reactive P[double bond, length as m-dash]C double bonds, are interesting candidates for the activation of E-H bonds, while the aromaticity of such compounds plays an appreciable role in the reversibility of the reaction, supported by NICS calculations.
Collapse
Affiliation(s)
- Richard O Kopp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sabrina L Kleynemeyer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Lucie J Groth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Moritz J Ernst
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Susanne M Rupf
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Nathan T Coles
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Christian Müller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
3
|
Lin J, Wossidlo. F, Coles NT, Weber M, Steinhauer S, Böttcher T, Müller C. Borane Adducts of Aromatic Phosphorus Heterocycles: Synthesis, Crystallographic Characterization and Reactivity of a Phosphinine-B(C 6 F 5 ) 3 Lewis Pair. Chemistry 2022; 28:e202104135. [PMID: 34967480 PMCID: PMC9303379 DOI: 10.1002/chem.202104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/20/2022]
Abstract
A phosphinine-borane adduct of a Me3 Si-functionalized phosphinine and the Lewis acid B(C6 F5 )3 has been synthesized and characterized crystallographically for the first time. The reaction strongly depends on the nature of the substituents in the α-position of the phosphorus heterocycle. In contrast, the reaction of B2 H6 with various substituted phosphinines leads to an equilibrium between the starting materials and the phosphinine-borane adducts that is determined by the Lewis basicity of the phosphinine. The novel phosphinine borane adduct (6-B(C6 F5 )3 ) shows rapid and facile insertion and [4+2] cycloaddition reactivity towards phenylacetylene. A hitherto unknown dihydro-1-phosphabarrelene is formed with styrene. The reaction with an ester provides a new, facile and selective route to 1-R-phosphininium salts. These salts then undergo a [4+2] cycloaddition in the presence of Me3 Si-C≡CH and styrene to cleanly form unprecedented derivatives of 1-R-phosphabarrelenium salts.
Collapse
Affiliation(s)
- Jinxiong Lin
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
| | - Friedrich Wossidlo.
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
| | - Nathan T. Coles
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
- School of ChemistryUniversity of NottinghamUniversity Park CampusNottinghamNG7 2RDUK
| | - Manuela Weber
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
| | - Simon Steinhauer
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
| | - Tobias Böttcher
- Institut für Anorganische und Analytische ChemieUniversität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Müller
- Freie Universität BerlinInstitut für Chemie und BiochemieFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
4
|
Leitl J, Jupp AR, Habraken ERM, Streitferdt V, Coburger P, Scott DJ, Gschwind RM, Müller C, Slootweg JC, Wolf R. A Phosphinine-Derived 1-Phospha-7-Bora-Norbornadiene: Frustrated Lewis Pair Type Activation of Triple Bonds. Chemistry 2020; 26:7788-7800. [PMID: 32052879 PMCID: PMC7383905 DOI: 10.1002/chem.202000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Salt metathesis of 1-methyl-2,4,6-triphenylphosphacyclohexadienyl lithium and chlorobis(pentafluorophenyl)borane affords a 1-phospha-7-bora-norbornadiene derivative 2. The C≡N triple bonds of nitriles insert into the P-B bond of 2 with concomitant C-B bond cleavage, whereas the C≡C bonds of phenylacetylenes react with 2 to form λ4 -phosphabarrelenes. Even though 2 must formally be regarded as a classical Lewis adduct, the C≡N and C≡C activation processes observed (and the mild conditions under which they occur) are reminiscent of the reactivity of frustrated Lewis pairs. Indeed, NMR and computational studies give insight into the mechanism of the reactions and reveal the labile nature of the phosphorus-boron bond in 2, which is also suggested by detailed NMR spectroscopic studies on this compound. Nitrile insertion is thus preceded by ring opening of the bicycle of 2 through P-B bond splitting with a low energy barrier. By contrast, the reaction with alkynes involves formation of a reactive zwitterionic methylphosphininium borate intermediate, which readily undergoes alkyne 1,4-addition.
Collapse
Affiliation(s)
- Julia Leitl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Andrew R. Jupp
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Evi R. M. Habraken
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Verena Streitferdt
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Daniel J. Scott
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Christian Müller
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - J. Chris Slootweg
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|