1
|
Patra BC, Datta S, Bhattacharya S. A Stimuli-Responsive Dual-Emitting Covalent Organic Framework Shows Selective Sensing of Highly Corrosive Acidic Media via Fluorescence Turn-On Signal with White Light Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7650-7659. [PMID: 38315165 DOI: 10.1021/acsami.3c15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Luminescent covalent organic frameworks (LCOFs) have been employed as platforms for sensing analytes. Judicial incorporation of appropriate functional units inside the framework leads to the different electronic states in the presence of external stimuli, e.g., temperature, pH, etc. We report herein a new COF (TPEPy) as a solid-state acid sensor specific for the highly acidic environments that range from pH ∼0.5 to ∼3.0. This COF shows a protonation-induced reversible color change from bright yellow to deep red upon decreasing the pH from 3 to 0.5 and vice versa. No visual color change was, however, observed above pH 3.0. Photoluminescence (PL) studies show that the intrinsic emission peak of the TPEPy COF at 530 nm is shifted to 420 nm owing to the N-protonation of the imine nitrogen of COF within this pH range. Extensive studies demonstrate that the protonation behavior of the COF is counterion dependent. This was revealed when different acids, e.g., HCl, HNO3, HBr, and HI, were employed. The intensity of the proton-induced emission peak at 420 nm depends significantly upon the counterions with the order of HCl > HNO3 > HBr > HI. These anions interact with the protonated TPEPy COF by cation-anion and H-bonding interactions. Further, the pristine COF showed near white light emission at a particular pH of 2.5 (CIE coordinates 0.27, 0.32). From the PL spectrophotometric titrations, the deprotonation pKa was experimentally found to be 1.8 ± 0.02 for the TPEPy COF. The sensor reported herein is reversible, reusable, and regenerable and is useful for assessing pH fluctuations within a strongly acidic range via digital signaling.
Collapse
Affiliation(s)
- Bidhan Chandra Patra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhasis Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati 517619, India
| |
Collapse
|
2
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Wang M, Fan T, Fang L, Gou G, Yin Y, Liu M, Li L. Building N-hydroxyphthalimide organocatalytic sites into a covalent organic framework for metal-free and selective oxidation of silanes. Chem Commun (Camb) 2023; 59:2019-2022. [PMID: 36723104 DOI: 10.1039/d2cc06446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel crystalline covalent organic framework COF-NHPI was built by a bottom-up strategy to guarantee highly ordered embedment of the N-hydroxyphthalimide (NHPI) units as nitroxyl radical organocatalytic sites. The COF-NHPI was demonstrated to be a metal-free, highly selective and heterogeneous catalyst for the efficient oxidation of various silanes to the corresponding silanols. Mechanistic studies revealed that the critical phthalimido N-oxyl radical was generated in situ to govern the catalysis.
Collapse
Affiliation(s)
- Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|
4
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Geng Q, Wang H, Wang J, Hong J, Sun W, Wu Y, Wang Y. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks. SMALL METHODS 2022; 6:e2200314. [PMID: 35691937 DOI: 10.1002/smtd.202200314] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Aqueous lithium storage devices are promising candidates for next-generation energy storage applications, featuring low-cost, safety, environmental benignness, and grid-scale merits. Developing reliable anode materials with fast Li+ diffusion is paramount to stimulate their development. Herein, the electrochemical performance and mechanism of a redox-active β-ketoenamine-linked covalent organic framework (COF) (2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol COF, DAAQ-TFP-COF) for lithium storage in aqueous electrolyte are explored for the first time. Systematic studies demonstrate that, by the conversion of neutral COF into anionic COF via a pinpoint surgery on the β-ketoenamine linkage, the resultative COF shows doubled Li+ storage capacity (132 mAh g-1 at 0.5 A g-1 , 87% of theoretical specific capacity), good rate capability (108 mAh g-1 at 10 A g-1 ), and excellent cyclability in 1000 cycles. This pinpoint surgery can be promising in extending the electrochemical applications of β-ketoenamine-linked COFs. The Li+ storage mechanism is investigated by ex situ electron paramagnetic resonance, in situ/ex situ Fourier transform infrared investigations, and density functional theory calculations. As a proof of new concept, a novel aqueous lithium-ion capacitor assembled with DAAQ-TFP-COF anode delivers high specific capacitance of 224 F g-1 (0.1 A g-1 ), supercapacitor-level power density (≈4000 W kg-1 ), and long cyclability.
Collapse
Affiliation(s)
- Qianhao Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Haichao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinlong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Hong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weiwei Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Chen W, Chen P, Chen D, Liu Y, Zhang G, Wang L, Chen L. Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric or Asymmetric "Two-in-One" Type Monomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105517. [PMID: 35142439 PMCID: PMC9259724 DOI: 10.1002/advs.202105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Indexed: 06/10/2023]
Abstract
Most of the reported covalent organic frameworks (COFs) so far are prepared from highly symmetric building blocks, which to some extent limits the expansion of COF diversity and complexity. Low-symmetric building blocks can be designed through a desymmetrized vertex strategy, which might be used to construct new topological COFs. But reports of COFs constructed by asymmetric building blocks are thus far very rare. Here, a feasible strategy to design asymmetric building blocks for COF synthesis is introduced, by simply varying the positions of functional groups in the monomer. As a proof of concept, two isomeric hexaphenylbenzene-based "two-in-one" type monomers (1,2,4-HPB-NH2 and 1,3,5-HPB-NH2 ) are designed and synthesized. To the authors' surprise, self-polycondensation of the asymmetric 1,2,4-HPB-NH2 (i.e., the isomer of common C3 -symmetric 1,3,5-HPB-NH2 ) also affords highly crystalline COF (1,2,4-HPB-COF) similar to the symmetric 1,3,5-HPB-NH2 counterpart with identical topological structure. The triangular porous structures of both HPB-based COFs are well resolved by powder X-ray diffraction (PXRD), theoretical simulations, nitrogen sorption, and morphologies analysis. This work demonstrates the "two-in-one" type asymmetric building blocks can also produce highly crystalline frameworks and thus provides a new structural design strategy for reticular chemistry.
Collapse
Affiliation(s)
- Weiben Chen
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
| | - Pei Chen
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
| | - Dan Chen
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
| | - Yi Liu
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Long Chen
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| |
Collapse
|
7
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|
8
|
Zhang T, Zhang G, Chen L. 2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions. Acc Chem Res 2022; 55:795-808. [PMID: 35025209 DOI: 10.1021/acs.accounts.1c00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ConspectusCovalent organic frameworks (COFs) are an emerging class of crystalline porous polymers and have received tremendous attention and research interest. COFs can be classified into two-dimensional (2D) and three-dimensional (3D) analogues. Resembling the architectures of porous graphene, 2D conjugated COFs have exhibited promising prospects in many fields, such as gas storage and separation, heterogeneous catalysis, sensing, photocatalysis, environmental remediation, drug delivery, energy storage and conversion, and so forth. However, efficient structural design for high-throughput production of crystalline 2D COFs remains challenging.In this Account, we summarize our recent contributions to the design, synthesis, and application exploration of 2D conjugated COFs. First, we raised an efficient "two-in-one" strategy for the facile synthesis of 2D imine COFs with good reproducibility and solvent adaptability. Thanks to this elaborate molecular design strategy, we could easily modulate the topology of COFs and fabricate COF films. In addition, we developed two approaches to stabilize the 2D conjugated COFs by using planar building blocks and donor-acceptor structures. We also proposed a skeleton engineering strategy to design COFs as electrode materials, through which redox-active orthoquinone moieties were stepwise-incorporated in the skeletons of isostructural 2D imine-linked COFs. This strategy enabled systematic investigations on a series of 2D conjugated COFs with analogous structures but different numbers of active sites for energy storage, which provides a good platform to unveil the underlying structure-property relationships. In addition, we recently developed a new kind of arylamine-linked 2D conjugated COFs. The electroactive diphenylamine linkages endowed these 2D conjugated COFs with extended conjugation and improved stability, which also conferred these COFs with excellent pseudocapacitive energy storage performance. Moreover, tailor-made sulfur-rich COFs were introduced that were synthesized by selective introduction of polysulfide or sulfonyl groups on the COF skeletons and were used for Li storage and proton conduction. At the end, the key challenges of 2D conjugated COFs toward practical applications and their future prospects are suggested. We hope that this Account will evoke new inspirations and innovative work in the field of 2D conjugated COFs in the near future, especially in some burgeoning and interdisciplinary research areas.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Yang J, Kang F, Wang X, Zhang Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. MATERIALS HORIZONS 2022; 9:121-146. [PMID: 34842260 DOI: 10.1039/d1mh00809a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly crystalline covalent organic frameworks (COFs) or conjugated polymers (CPs) are very important and highly desirable because these materials would display better performance in diverse devices and provide more structure-property related information. However, how to achieve highly crystalline or single-crystal COFs and CPs is very challenging. Recently, many research studies have demonstrated the possibility of enhancing the crystallinity of COFs and CPs. Thus, it is timely to offer an overview of the important progress in improving the crystallinity of COFs and CPs from the viewpoint of design strategies. These strategies include polycondensation reaction optimization, improving the planarity, fluorine substitution, side chain engineering, and so on. Furthermore, the challenges and perspectives are also discussed to promote the realization of highly crystalline or single-crystal COFs and CPs.
Collapse
Affiliation(s)
- Jie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
10
|
Yang F, Qu HY, Guo Y, Kan JL, Dong YB. Boosting the photocatalytic performance via isomeric configuration design in covalent organic frameworks. Chem Commun (Camb) 2022; 58:13210-13213. [DOI: 10.1039/d2cc04935j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BT-COF1 and BT-COF2 with identical chemical formula but isomeric configurations were synthesized. BT-COF2 with broader absorption range and more evident charge transfer property exhibits superior photocatalytic activity in the oxidation of sulfides.
Collapse
Affiliation(s)
- Fan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Hong-Yan Qu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuan Guo
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
11
|
Chen D, Chen W, Zhang G, Li S, Chen W, Xing G, Chen L. N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05233] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
12
|
Zhao Z, Zhao J, Zhang S, Zhang G, Chen W, Yang Z, Zhang T, Chen L. Topology modulation of 2D covalent organic frameworks via a "two-in-one" strategy. NANOSCALE 2021; 13:19385-19390. [PMID: 34812818 DOI: 10.1039/d1nr05758h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Topology modulation of covalent organic frameworks (COFs) still remains barely explored, probably due to the lack of appropriate building blocks. A "two-in-one" strategy applies bifunctional monomers to endow ideal stoichiometry and has recently demonstrated great potential in the facile preparation of highly crystalline two-dimensional (2D) COFs with different topologies. Herein, we employ this approach to modulate the topology of 2D COFs by varying the solvents or the monomer concentrations. To our delight, 2D COFs featuring a Kagome (kgm) lattice with both hexagonal and triangular dual pores (DP) or featuring a rhombic square (sql) single pore (SP) structure can be selectively formed by varying the solvents. Furthermore, adjusting the monomer concentrations also successfully tuned the topology of the COFs. In addition, the highly porous dual-pore COF showed potential applications for controlled drug delivery.
Collapse
Affiliation(s)
- Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Jinwei Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Simeng Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Weiben Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Zongfan Yang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Ting Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Zhao W, Yu C, Zhao J, Chen F, Guan X, Li H, Tang B, Yu G, Valtchev V, Yan Y, Qiu S, Fang Q. 3D Hydrazone-Functionalized Covalent Organic Frameworks as pH-Triggered Rotary Switches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102630. [PMID: 34510728 DOI: 10.1002/smll.202102630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The property expansion of 3D functionalized covalent organic frameworks (COFs) is important for developing their potential applications. Herein, the first case of 3D hydrazone-decorated COFs as pH-triggered molecular switches is reported, and their application in the stimuli-responsive drug delivery system is explored. These functionalized COFs with hydrazone groups on the channel walls are obtained via a multi-component bottom-up synthesis strategy. They exhibit a reversible E/Z isomerization at various pH values, confirmed by UV-vis absorption spectroscopy and proton conduction. Remarkably, after loading cytarabine (Ara-C) as a model drug molecule, these pH-responsive COFs show an excellent and intelligent sustained-release effect with an almost fourfold increase in the Ara-C release at pH = 4.8 than at pH = 7.4, which will effectively improve drug-targeting. Thus, these results open a way toward designing 3D stimuli-responsive functionalized COF materials and promote their potential application as drug carriers in the field of disease treatment.
Collapse
Affiliation(s)
- Wenjuan Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chengyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Zhao
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, P. R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bin Tang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Guangtao Yu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong, 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, Caen, 14050, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE, 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Xia Y, Di T, Meng Z, Zhu T, Lei Y, Chen S, Li T, Li L. Versatile One-Pot Construction Strategy for the Preparation of Porous Organic Polymers via Domino Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunxia Xia
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Tuo Di
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Zhaohui Meng
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Tingting Zhu
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Yujie Lei
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Tiesheng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Li
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
15
|
Yan X, Li H, Shang P, Liu H, Liu J, Zhang T, Xing G, Fang Q, Chen L. Facile synthesis of 3D covalent organic frameworks via a two-in-one strategy. Chem Commun (Camb) 2021; 57:2136-2139. [PMID: 33527948 DOI: 10.1039/d0cc08129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A "two-in-one" strategy was employed to construct 3D-COFs for the first time. Based on this strategy, a 3D-Flu-COF could be readily synthesized in various simplex organic solvents. Benefitting from the non-conjugated structure, the 3D-Flu-COF showcased excellent acidichromic sensing performance with good sensitivity, reversibility and naked eye visibility.
Collapse
Affiliation(s)
- Xiaoli Yan
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Pengna Shang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Huan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Jingjuan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Ting Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
|
17
|
Li Y, Guo L, Lv Y, Zhao Z, Ma Y, Chen W, Xing G, Jiang D, Chen L. Polymorphism of 2D Imine Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:5363-5369. [DOI: 10.1002/anie.202015130] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yusen Li
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Linshuo Guo
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Yongkang Lv
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Ziqiang Zhao
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Yanhang Ma
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Guolong Xing
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Long Chen
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|