1
|
Silalahi RPB, Kahlal S, Saillard JY, Liu CW. Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster. Molecules 2024; 29:4427. [PMID: 39339425 PMCID: PMC11433815 DOI: 10.3390/molecules29184427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The ability to fabricate bimetallic clusters with atomic precision offers promising prospects for elucidating the correlations between their structures and properties. Nevertheless, achieving precise control at the atomic level in the production of clusters, including the quantity of dopant, characteristic of ligands, charge state of precursors, and structural transformation, have remained a challenge. Herein, we report the synthesis, purification, and characterization of a new bimetallic hydride cluster, [AuCu11(H){S2P(OiPr)2}6(C≡CPh)3] (AuCu11H). The hydride position in AuCu11H was determined using DFT calculations. AuCu11H comprises a ligand-stabilized defective fcc Au@Cu11 cuboctahedron. AuCu11H is metastable and undergoes a spontaneous transformation through ligand exchange into the isostructural [AuCu11(Cl){S2P(OiPr)2}6(C≡CPh)3] (AuCu11Cl) and into the complete cuboctahedral [AuCu12{S2P(OiPr)2}6(C≡CPh)4]+ (AuCu12) through an increase in nuclearity. These structural transformations were tracked by NMR and mass spectrometry.
Collapse
Affiliation(s)
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, F-35000 Rennes, France;
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, F-35000 Rennes, France;
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan;
| |
Collapse
|
2
|
Biswas S, Pal A, Jena MK, Hossain S, Sakai J, Das S, Sahoo B, Pathak B, Negishi Y. Luminescent Hydride-Free [Cu 7(SC 5H 9) 7(PPh 3) 3] Nanocluster: Facilitating Highly Selective C-C Bond Formation. J Am Chem Soc 2024. [PMID: 38979882 DOI: 10.1021/jacs.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
3
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
4
|
Mu WL, Luo YT, Xia PK, Jia YL, Wang P, Pei Y, Liu C. Atomically Precise Mo 2Cu 17 Bimetallic Nanocluster: Synergistic Mo 2O 4-Coupled Copper Alkynyl Cluster for the Improved Hydrogen Evolution Reaction Performance. Inorg Chem 2024; 63:6767-6775. [PMID: 38569160 DOI: 10.1021/acs.inorgchem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-Ting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Peng-Kun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Lei Jia
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
5
|
Qin HN, He MW, Wang J, Li HY, Wang ZY, Zang SQ, Mak TCW. Thiacalix[4]arene Etching of an Anisotropic Cu 70H 22 Intermediate for Accessing Robust Modularly Assembled Copper Nanoclusters. J Am Chem Soc 2024; 146:3545-3552. [PMID: 38277257 DOI: 10.1021/jacs.3c13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.
Collapse
Affiliation(s)
- Hao-Nan Qin
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Wei He
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Brocha Silalahi RP, Liang H, Jo Y, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Wang Q, Choi W, Lee D, Saillard JY, Liu CW. Hydride-Containing Pt-doped Cu-rich Nanoclusters: Synthesis, Structure, and Electrocatalytic Hydrogen Evolution. Chemistry 2023:e202303755. [PMID: 38149882 DOI: 10.1002/chem.202303755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
A structurally precise hydride-containing Pt-doped Cu-rich nanocluster [PtH2 Cu14 {S2 P(Oi Pr)2 }6 (CCPh)6 ] (1) has been synthesized. It consists of a bicapped icosahedral Cu14 cage that encapsulates a linear PtH2 unit. Upon the addition of two equivalents of CF3 COOH to 1, two hydrido clusters are isolated. These clusters are [PtHCu11 {S2 P(Oi Pr)2 }6 (CCPh)4 ] (2), which is a vertex-missing Cu11 cuboctahedron encaging a PtH moiety, and [PtH2 Cu11 {S2 P(Oi Pr)2 }6 (CCPh)3 ] (3), a distorted 3,3,4,4,4-pentacapped trigonal prismatic Cu11 cage enclosing a PtH2 unit. The electronic structure of 2, analyzed by Density Functional Theory, is a 2e superatom. The electrocatalytic activities of 1-3 for hydrogen evolution reaction (HER) were compared. Notably, Cluster 2 exhibited an exceptionally excellent HER activity within metal nanoclusters, with an onset potential of -0.03 V (at 10 mA cm-2 ), a Tafel slope of 39 mV dec-1 , and consistent HER activity throughout 3000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pt site plays a crucial role in the remarkable HER activity and may provide valuable insights for establishing correlations between catalyst structure and HER activity.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Hao Liang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Yongsung Jo
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Woojun Choi
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| |
Collapse
|
7
|
Biswas S, Das S, Negishi Y. Advances in Cu nanocluster catalyst design: recent progress and promising applications. NANOSCALE HORIZONS 2023; 8:1509-1522. [PMID: 37772632 DOI: 10.1039/d3nh00336a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The quest for cleaner pathways to the production of fuels and chemicals from non-fossil feedstock, efficient transformation of raw materials to value-added chemicals under mild conditions, and control over the activity and selectivity of chemical processes are driving the state-of-the-art approaches to the construction and precise chemical modification of sustainable nanocatalysts. As a burgeoning category of atomically precise noble metal nanoclusters, copper nanoclusters (Cu NCs) benefitting from their exclusive structural architecture, ingenious designability of active sites and high surface-to-volume ratio qualify as potential rationally-designed catalysts. In this Minireview, we present a detailed coverage of the optimal design strategies and controlled synthesis of Cu NC catalysts with a focus on tuning of active sites at the atomic level, the implications of cluster size, shape and structure, the ligands and heteroatom doping on catalytic activity, and reaction scope ranging from chemical catalysis to emerging photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
8
|
Huang QQ, Chen J, Hu MY, Wang YL, Li Y, Fu F, Wei QH. Ionic Liquids-Driven Cluster-to-Cluster Conversion of Polyhydrido Copper(I) Clusters Cu 7H 5 to Cu 8H 6 and Cu 12H 9. Inorg Chem 2023; 62:14998-15005. [PMID: 37655478 DOI: 10.1021/acs.inorgchem.3c01830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although ionic liquids (ILs) are of prime interest for the synthesis of various nanomaterials, they are scarcely utilized for the polyhydrido copper(I) [Cu(I)H] clusters. Herein, two air-stable Cu(I)H clusters, [Cu8H6(dppy)6](NTf2)2 (Cu8H6) and {Cu12H9(dppy)6[N(CN)2]3} (Cu12H9), are synthesized in high yields for the first time from the ILs-driven conversion of an unprecedented cluster [Cu7H5(dppy)6](ClO4)2 (Cu7H5) by a facile three-layers diffusion crystal (TLDC) method, strategically introducing IL-NTf2 and IL-N(CN)2 as two types of unusual interfacial crystallized templates, respectively. Their structures are fully characterized by various spectroscopic methods and X-ray crystallography, which shows that the anion of IL plays an important role as an anion template and an anion ligand in controlling the structural conversion of Cu(I)H clusters. Their photophysical properties are also investigated, and it is found that all reported clusters exhibit red luminescence with λem ranging from 600 to 690 nm.
Collapse
Affiliation(s)
- Qiu-Qin Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mei-Yue Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Ling Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiao-Hua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Liao JH, Brocha Silalahi RP, Chiu TH, Liu CW. Locating Interstitial Hydrides in MH 2@Cu 14 (M = Cu, Ag) Clusters by Single-Crystal X-ray Diffraction. ACS OMEGA 2023; 8:31541-31547. [PMID: 37663474 PMCID: PMC10468881 DOI: 10.1021/acsomega.3c04758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Two structures, [Cu15H2(S2CNnBu2)6(C≡CPh)6][CuCl2] (1) and [AgH2Cu14{S2P(OiPr)2}6(C≡CPh)6][PF6] (2), are characterized by X-ray crystallography with high-quality single crystals. The position of interstitial hydrides can be accurately located. In addition, the refinement of the hydrides with anisotropic displacement parameters (ADPs) was successful. The distances between the central atom and copper atoms, as well as the distances within the metal cages surrounding the hydrides, are analyzed and compared with similar MH2@Cu14 (M = Cu, Ag, Pd) compounds. This work provides a thoughtful and accurate assessment of the considerations and challenges associated with anisotropic refinement for H atoms, particularly in X-ray data collection.
Collapse
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Rhone P. Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| |
Collapse
|
10
|
Artem'ev AV, Liu CW. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem Commun (Camb) 2023. [PMID: 37184074 DOI: 10.1039/d3cc01215h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atomically precise clusters of group 11 metals (Cu, Ag, and Au) attract considerable attention owing to their remarkable structure and fascinating properties. One of the unique subclasses of these clusters is based on dichalcophosphate ligands of [(RO)2PE2]- type (E = S or Se, and R = alkyl). These ligands successfully stabilise the most diverse Cu, Ag, and Au clusters and superatoms, spanning from simple ones to amazing assemblies featuring unusual structural and bonding patterns. It is noteworthy that such complicated clusters are assembled directly from cheap and simple reagents, metal(I) salts and dichalcophosphate anions. This reaction, when performed in the presence of a hydride or other anion sources, or foreign metal ions, results in hydrido- or anion-templated homo- or heteronuclear structures. In this feature article, we survey the recent advances in this exciting field, highlighting the powerful synthetic capabilities of the system "a metal(I) salt - [(RO)2PX2]- ligands - a templating anion or borohydride" as an inexhaustible platform for the creation of new atomically precise clusters, superatoms, and nanoalloys.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - C W Liu
- National Dong Hwa University, Department of Chemistry, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
11
|
Silalahi RPB, Liao JH, Tseng YF, Chiu TH, Kahlal S, Saillard JY, Liu CW. Unusual core engineering on a copper hydride nanoball. Dalton Trans 2023; 52:2106-2114. [PMID: 36722491 DOI: 10.1039/d2dt03449b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A neutral polyhydrido copper cluster, [Cu27H15{S2CNnBu2}12] (abbreviated as [Cu27H15]), was prepared by the reaction of dithiocarbamates (dtc), Cu(I) salts and NaBH4. The isolated cluster provides insights into core engineering, demonstrating its novel ability to reversibly add or remove one copper atom from the cluster core. Single-crystal X-ray analysis reveals that the new core-shell structure exhibits a Cu24 rhombicuboctahedral outer cage and an inner Cu3 triangular kernel. The two core-shell clusters, [Cu27H15{S2CNnBu2}12] and previously published [Cu28H15(S2CNnBu2)12]+ (abbreviated as [Cu28H15]+), are only differentiated by one copper atom in their inner core. Importantly, we demonstrate core engineering with the controllable reversible transition between an irregular Cu4 tetrahedron and a Cu3 triangle, whilst maintaining their outer Cu24 shell intact. The 15 hydride atoms in [Cu27H15], coordinated in three different modes, are co-incident with the hydride positions in [Cu28H15]+. The degradation of [Cu27H15] in solution or the addition of one eq. of Cu(I) ions leads to the conversion of [Cu27H15] into [Cu28H15]+, while the reverse transformation can be achieved by the addition of either formic acid or a reducing agent to [Cu28H15]+. A dicationic species was observed in the ESI mass spectrum, and the composition is formulated as [Cu56H30(S2CNnBu2)24]2+, a dimer of [Cu27H15(S2CNnBu2)12 + Cu+]22+. The dimeric species was further explored by DFT calculations, suggesting that the lowest energy structure consists of a [Cu28H15]+ and a [Cu27H15] cluster connected through one Cu+ atom bridge. As a result, [Cu27H15] is considered an intermediate species in the formation of the more stable [Cu28H15]+ nanoball.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Yu-Fang Tseng
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| |
Collapse
|
12
|
Bao Y, Wu X, Yin B, Kang X, Lin Z, Deng H, Yu H, Jin S, Chen S, Zhu M. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem Sci 2022; 13:14357-14365. [PMID: 36545150 PMCID: PMC9749112 DOI: 10.1039/d2sc03239b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Exploring the structural evolution of clusters with similar sizes and atom numbers induced by the removal or addition of a few atoms contributes to a deep understanding of structure-property relationships. Herein, three well-characterized copper-hydride nanoclusters that provide insight into the surface-vacancy-defect to non-defect structural evolution were reported. A surface-defective copper hydride nanocluster [Cu28(S-c-C6H11)18(PPh2Py)3H8]2+ (Cu28-PPh2Py for short) with only one C 1 symmetry axis was synthesized using a one-pot method under mild conditions, and its structure was determined. Through ligand regulation, a 29th copper atom was inserted into the surface vacancy site to give two non-defective copper hydride nanoclusters, namely [Cu29(SAdm)15Cl3(P(Ph-Cl)3)4H10]+ (Cu29-P(Ph-Cl)3 for short) with one C 3 symmetry axis and (Cu29(S-c-C6H11)18(P(Ph-pMe)3)4H10)+ (Cu29-P(Ph-Me)3 for short) with four C 3 symmetry axes. The optimized structures show that the 10 hydrides cap four triangular and all six square-planar structures of the cuboctahedral Cu13 core of Cu29-P(Ph-Me)3, while the 10 hydrides cap four triangular and six square-planar structures of the anti-cuboctahedral Cu13 core of Cu29-P(Ph-Cl)3, with the eight hydrides in Cu28-PPh2Py capping four triangular and four square planar-structures of its anti-cuboctahedral Cu13 core. Cluster stability was found to increase sequentially from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, which indicates that stability is affected by the overall structure of the cluster. Structural adjustments to the metal core, shell, and core-shell bonding model, in moving from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, enable the structural evolution and mechanism responsible for their physicochemical properties to be understood and provide valuable insight into the structures of surface vacancies in copper nanoclusters and structure-property relationships.
Collapse
Affiliation(s)
- Yizheng Bao
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xiaohang Wu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xi Kang
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| |
Collapse
|
13
|
López-Estrada O, Torres-Moreno JL, Zuniga-Gutierrez B, Calaminici P, Malola S, Köster AM, Häkkinen H. 1H NMR global diatropicity in copper hydride complexes. NANOSCALE 2022; 14:12668-12676. [PMID: 35947047 DOI: 10.1039/d2nr02415b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the magnetic response of electrons in nanoclusters is essential to interpret their NMR spectra thereby providing guidelines for their synthesis towards various target applications. Here, we consider two copper hydride clusters that have applications in hydrogen storage and release under standard temperature and pressure. Through Born-Oppenheimer molecular dynamics simulations, we study dynamics effects and their contributions to the NMR peaks. Finally, we examine the electrons' magnetic response to an applied external magnetic field using the gauge-including magnetically induced currents theory. Local diatropic currents are generated in both clusters but an interesting global diatropic current also appears. This diatropic current has contributions from three μ3-H hydrides and six Cu atoms that form a chain together with three S atoms from the closest ligands resulting in a higher shielding of these hydrides' 1H NMR response. This explains the unusual upfield chemical shift compared to the common downfield shift in similarly coordinated hydrides both observed in previous experimental reports.
Collapse
Affiliation(s)
- Omar López-Estrada
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Departamento de Química, Cinvestav, Av. Instituto Politécnico Nacional, 2508, A.P. 14740, Ciudad de México 07000, Mexico
| | - Jorge L Torres-Moreno
- Departamento de Química, Cinvestav, Av. Instituto Politécnico Nacional, 2508, A.P. 14740, Ciudad de México 07000, Mexico
| | - Bernardo Zuniga-Gutierrez
- Departamento de Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, C. P. 44430 Guadalajara, Jalisco, Mexico
| | - Patrizia Calaminici
- Departamento de Química, Cinvestav, Av. Instituto Politécnico Nacional, 2508, A.P. 14740, Ciudad de México 07000, Mexico
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Andreas M Köster
- Departamento de Química, Cinvestav, Av. Instituto Politécnico Nacional, 2508, A.P. 14740, Ciudad de México 07000, Mexico
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
14
|
Liu CY, Yuan SF, Wang S, Guan ZJ, Jiang DE, Wang QM. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat Commun 2022; 13:2082. [PMID: 35440582 PMCID: PMC9018778 DOI: 10.1038/s41467-022-29819-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Copper hydrides are important hydrogenation catalysts, but their poor stability hinders the practical applications. Ligand engineering is an effective strategy to tackle this issue. An amidinate ligand, N,N'-Di(5-trifluoromethyl-2-pyridyl)formamidinate (Tf-dpf) with four N-donors has been applied as a protecting agent in the synthesis of stable copper hydride clusters: Cu11H3(Tf-dpf)6(OAc)2 (Cu11) with three interfacial μ5-H and [Cu12H3(Tf-dpf)6(OAc)2]·OAc (Cu12) with three interstitial μ6-H. A solvent-triggered reversible interconversion between Cu11 and Cu12 has been observed thanks to the flexibility of Tf-dpf. Cu11 shows high activity in the reduction of 4-nitrophenol to 4-aminophenol, while Cu12 displays very low activity. Deuteration experiments prove that the type of hydride is the key in dictating the catalytic activity, for the interfacial μ5-H species in Cu11 are involved in the catalytic cycle whereas the interstitial μ6-H species in Cu12 are not. This work highlights the role of hydrides with regard to catalytic hydrogenation activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - Song Wang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, 10084, Beijing, PR China.
| |
Collapse
|
15
|
Silalahi RPB, Wang Q, Liao J, Chiu T, Wu Y, Wang X, Kahlal S, Saillard J, Liu CW. Reactivities of Interstitial Hydrides in a Cu
11
Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rhone P. Brocha Silalahi
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Jian‐Hong Liao
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Tzu‐Hao Chiu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Ying‐Yann Wu
- Institute of Chemistry Academia Sinica Taipei 11528 Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - C. W. Liu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| |
Collapse
|
16
|
liu X, Shen H, Gao Y, Deng G, Deng H, Han YZ, Teo BK, Zheng N. Cu 28H 20: A Peculiar Chiral Nanocluster with an Exposed Cu Atom and 13 Surface Hydrides. Chem Commun (Camb) 2022; 58:7670-7673. [DOI: 10.1039/d1cc06415k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is racemate of a chiral nanocluster [Cu28H20(S2P(OiPr)2)9]- which has a tetrahedral Cu4 core embedded in a peculiar Cu24 shell. The Cu28H20 framework conforms to idealized C3 symmetry. The...
Collapse
|
17
|
Guo QL, Han BL, Sun CF, Wang Z, Tao Y, Lin JQ, Luo GG, Tung CH, Sun D. Observation of a bcc-like framework in polyhydrido copper nanoclusters. NANOSCALE 2021; 13:19642-19649. [PMID: 34816855 DOI: 10.1039/d1nr05567d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cu is well-known to adopt a face-centered cubic (fcc) structure in the bulk phase. Ligand-stabilized Cu nanoclusters (NCs) with atomically precise structures are an emerging class of nanomaterials. However, it remains a great challenge to have non-fcc structured Cu NCs. In this contribution, we report the syntheses and total structure determination of six 28-nuclearity polyhydrido Cu NCs: [Cu28H16(dppp)4(RS)4(CF3CO2)8] (dppp = 1,3-bis(diphenylphosphino)propane, RSH = cyclohexylthiol, 1; tert-butylthiol, 3; and 2-thiophenethiol, 4) and [Cu28H16(dppe)4(RS)4(CH3CO2)6Cl2] (dppe = 1,2-bis(diphenylphosphino)ethane, RSH = (4-isopropyl)thiophenol, 2; 4-tert-butylbenzenethiol, 5; and 4-tert-butylbenzylmercaptan, 6). Their well-defined structures solved by X-ray single crystal diffraction reveal that these 28-Cu NCs are isostructural, and the overall metal framework is arranged as a sandwich structure with a core-shell Cu2@Cu16 unit held by two Cu5 fragments. One significant finding is that the organization of 18 Cu atoms in the Cu2@Cu16 could be regarded as an incomplete and distorted version of 3 × 2 × 2 "cutout" of the body-centered cubic (bcc) bulk phase, which was strikingly different to the fcc structure of bulk Cu. The bcc framework came as a surprise, as no bcc structures have been previously observed in Cu NCs. A comparison with the ideal bcc arrangement of 18 Cu atoms in the bcc lattice suggests that the distortion of the bcc structure results from the insertion of interstitial hydrides. The existence, number, and location of hydrides in these polyhydrido Cu NCs are established by combined experimental and DFT results. These results have significant implications for the development of high-nuclearity Cu hydride NCs with a non-fcc architecture.
Collapse
Affiliation(s)
- Qi-Lin Guo
- Key Laboratory of Environmental Friendly Functional Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China.
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Cun-Fa Sun
- Key Laboratory of Environmental Friendly Functional Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China.
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.
| | - Jin-Qing Lin
- Key Laboratory of Environmental Friendly Functional Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China.
| | - Geng-Geng Luo
- Key Laboratory of Environmental Friendly Functional Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
18
|
Wang S, Liu T, Jiang DE. Locating Hydrides in Ligand-Protected Copper Nanoclusters by Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53468-53474. [PMID: 34591462 DOI: 10.1021/acsami.1c14618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrides play an important role in constructing atomically precise metal nanoclusters and nanoparticles. They occupy both the interstitial sites inside the metal cores and the interfacial sites between the surface of the metal core and the ligand layer. Although the heavy-atom positions can be routinely determined by single-crystal X-ray diffraction, the challenge in growing a large and high-enough-quality single crystal for neutron diffraction and the limited availability of neutron sources have prevented researchers from precisely knowing the hydride locations. A recently developed deep-learning method showed great promise in accelerating the determination of hydride sites in metal nanostructures, but it is unclear if this approach, trained on clusters up to Cu32 in size, can be applied to recently discovered, much larger nanoclusters such as Cu81. Here we show that an improved deep-learning model based on convolutional neural networks is both accurate and robust. We apply it to two recently reported copper nanoclusters, [Cu32(PET)24H8Cl2]2- and [Cu81(PhS)46(tBuNH2)10H32]3+, whose hydride locations have not been determined by neutron but were proposed from density functional theory (DFT) calculations. In the former, our CNN model confirms the DFT structure; in the latter, our CNN model predicts a more stable structure with different hydride sites.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Tongyu Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Silalahi RPB, Wang Q, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Saillard JY, Liu CW. Reactivities of Interstitial Hydrides in a Cu 11 Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2021; 61:e202113266. [PMID: 34755440 DOI: 10.1002/anie.202113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Indexed: 11/10/2022]
Abstract
In sharp contrast to surface hydrides, reactivities of interstitial hydrides are difficult to explore. When treated with a metal ion (Cu+ , Ag+ , and Au+ ), the stable CuI dihydride template [Cu11 H2 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ] (H2 Cu11 ) generates surprisingly three very different compounds, namely [CuH2 Cu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ]+ (1), [AgH2 Cu14 {S2 P(Oi Pr)2 }6 ((C≡CPh)6 ]+ (2), and [AuCu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 Cl] (3). Compounds 1 and 2 are both MI species and maintain the same number of hydride ligands as their H2 Cu11 precursor. Neutron diffraction revealed the first time a trigonal-pyramidal hydride coordination mode in the AgCu3 environment of 2. 3 has no hydride and exhibits a mixed-valent [AuCu11 ]10+ metal core, making it a two-electron superatom.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Ying-Yann Wu
- Institute of Chemistry, Academia Sinica, Taipei, 11528, Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| |
Collapse
|
20
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters. Nat Commun 2021; 12:6186. [PMID: 34702816 PMCID: PMC8548331 DOI: 10.1038/s41467-021-26528-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Although the hollow icosahedral M12 kernel has been extensively observed in metal nanoclusters, its origin remains a mystery. Here we report a reasonable avenue for the generation of the hollow icosahedron: the kernel collapse from several small nano-building blocks to an integrated hollow icosahedron. On the basis of the Au alloying processes from Ag28Cu12(SR)24 to the template-maintained AuxAg28-xCu12(SR)24 and then to the template-transformed Au12CuyAg32-y(SR)30, the kernel evolution/collapse from “tetrahedral Ag4 + 4∗Ag3” to “tetrahedral Au4 + 4∗M3 (M = Au/Ag)” and then to “hollow icosahedral Au12” is mapped out. Significantly, the “kernel collapse” from small-sized nano-building blocks to large-sized nanostructures not only unveils the formation of hollow icosahedral M12 in this work, but also might be a very common approach in constructing metallic kernels of nanoclusters and nanoparticles (not limited to the M12 structure). The origin of the hollow icosahedral M12 kernel in metal nanoclusters is under debate. Here the authors demonstrate the Au alloying-induced kernel collapse from small-sized nano-building blocks as a viable approach for the generation of hollow icosahedral M12 kernel in metal nanoclusters.
Collapse
|
22
|
Cao YD, Hao HP, Liu HS, Yin D, Wang ML, Gao GG, Fan LL, Liu H. A 20-core copper(I) nanocluster as electron-hole recombination inhibitor on TiO 2 nanosheets for enhancing photocatalytic H 2 evolution. NANOSCALE 2021; 13:16182-16188. [PMID: 34545898 DOI: 10.1039/d1nr04683g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the design of atom-precise copper nanoclusters, besides the exploration of their aesthetic cage-like architectures, their structural modulation and potential applications are being extensively explored. Herein, an atom-precise 20-core copper(I)-alkynyl nanocluster (UJN-Cu20) protected by ethinyloestradiol ligands issynthesized. By virtue of outer-shell hydroxyl groups, UJN-Cu20 could be uniformly modified on the surface of TiO2 nanosheets via hydrogen bonding interactions, thus forming an efficient nanocomposite photocatalyst for hydrogen evolution. By constructing a Z-scheme heterojunction, the photocatalytic hydrogen evolution activity of the nanocomposite (13 mmol g-1 h-1) significantly improved as compared to that of TiO2 nanosheets (0.4 mmol g-1 h-1). As a narrow bandgap cocatalyst, UJN-Cu20 is confirmed to effectively inhibit the electron-hole recombination on the surface of the TiO2 nanosheet, which provides a new concept for the design of copper cluster-assisted effective photocatalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Hui-Ping Hao
- College of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. China
| | - Hua-Shi Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Di Yin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Ming-Liang Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
23
|
Schütz M, Gemel C, Klein W, Fischer RA, Fässler TF. Intermetallic phases meet intermetalloid clusters. Chem Soc Rev 2021; 50:8496-8510. [PMID: 34114586 DOI: 10.1039/d1cs00286d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article intermetalloid clusters of Cu-Zn, Cu-AI, Cu-Sn, and Cu-Pb are discussed. Intermetallic compounds based on these metal combinations are of the Hume-Rothery type with well-defined structures related to the valence electron count of the involved metals. Many Zintl-type and molecular clusters with these metals are known with remarkable structural parallels to the respective solid-state phases. On several examples, this article discusses intermetalloid clusters in terms of their metal core structures and relates them to structural principles in intermetallic solid-state phases. Also the syntheses of such clusters are addressed. Zintl-type and molecular clusters are most generally accessible from organometallic precursor complexes with redox processes between the different metals as an underlying synthesis concept.
Collapse
Affiliation(s)
- Max Schütz
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Christian Gemel
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Wilhelm Klein
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Roland A Fischer
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Thomas F Fässler
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| |
Collapse
|
24
|
Brocha Silalahi RP, Chiu TH, Kao JH, Wu CY, Yin CW, Liu YC, Chen YJ, Saillard JY, Chiang MH, Liu CW. Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu-Ag and Cu-Au Nanoclusters via Copper Hydride Precursors. Inorg Chem 2021; 60:10799-10807. [PMID: 34236845 DOI: 10.1021/acs.inorgchem.1c01489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structural characteristics, and photophysical properties of luminescent Cu-rich bimetallic superatomic clusters [Au@Cu12(S2CNnPr2)6(C≡CPh)4]+ (1a+), [Au@Cu12{S2P(OR)2}6(C≡CPh)4]+ (2+), (2a+ = iPr; 2b+ = nPr), [Au@Cu12{S2P(C2H4Ph)2}6(C≡CPh)4]+ (2c+), and [Ag@Cu12{S2P(OnPr)2}6(C≡CPh)4]+ (3+) were studied. Compositionally uniform clusters 1+-3+ were isolated from the reaction of dithiolato-stabilized, polyhydrido copper clusters with phenylacetylene in the presence of heterometal salts. By using X-ray diffraction, the structures of 1a+, 2a+, 2b+, and 3+ were able to be determined. ESI-mass spectrometry and elemental analysis confirmed their compositions and purity. The structural characteristics of these clusters are similar with respect to displaying gold (or silver)-centered Cu12 cuboctahedra surrounded by six dithiocarbamate/dithiophosph(in)ate and four alkynyl ligands. The doping of Au and Ag atoms into the polyhydrido copper nanoclusters significantly enhances their PL quantum yields from Ag@Cu12 (0.58%) to Au@Cu12 (55%) at ambient temperature in solution. In addition, the electrochemical properties of the new alloys were investigated by cyclic voltammetry.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Jhen-Heng Kao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chun-Yen Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chi-Wei Yin
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | - Yu-Chiao Liu
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | | | - Ming-Hsi Chiang
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| |
Collapse
|
25
|
Chakrahari KK, Liao J, Silalahi RPB, Chiu TH, Liao JH, Wang X, Kahlal S, Saillard JY, Liu CW. Isolation and Structural Elucidation of 15-Nuclear Copper Dihydride Clusters: An Intermediate in the Formation of a Two-Electron Copper Superatom. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002544. [PMID: 33113288 DOI: 10.1002/smll.202002544] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Highly reactive copper-dihydride clusters, [Cu15 (H)2 (S2 CNR2 )6 (C2 Ph)6 ](PF6 ) {R = n Bu (1H ), n Pr (2H ), i Bu (3H )}, are isolated during the reaction of [Cu28 H15 {S2 CNn Bu2 }12 ](PF6 ) with ten equivalents of phenylacetylene. They are found to be intermediates in the formation of the earlier reported two-electron superatom [Cu13 (S2 CNR2 )6 (C2 Ph)4 ]+ . Better yields are obtained by reacting dithiocarbamate sodium salts, [Cu(CH3 CN)4 ](PF6 ), BH4- and phenylacetylene. The presence of two hydrides in the isolated clusters is confirmed by the synthesis and characterization of its deuteride analogue [Cu15 (D)2 (S2 CNR2 )6 (C2 Ph)6 ]+ , and a single-crystal neutron structure of 2H . Structural characterization of 1H reveals a new bicapped icosahedral copper(I) cage encapsulating a linear copper dihydride (CuH2 )- unit. Reaction of 3H with Au(I) salts yields a highly luminescent [AuCu12 (S2 CNi Bu2 )6 (C2 Ph)4 ]+ cluster.
Collapse
Affiliation(s)
- Kiran Kumarvarma Chakrahari
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Jingping Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes, F-35000, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 974301, Taiwan
| |
Collapse
|
26
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
27
|
Schütz M, Gemel C, Muhr M, Jandl C, Kahlal S, Saillard JY, Fischer RA. Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms. Chem Sci 2021; 12:6588-6599. [PMID: 34040734 PMCID: PMC8132940 DOI: 10.1039/d1sc00268f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cluster growth reactions in the system [Cu5](Mes)5 + [Al4](Cp*)4 (Mes = mesitylene, Cp* = pentamethylcyclopentadiene) were explored and monitored by in situ LIFDI-MS and 1H-NMR. Feedback into experimental design allowed for an informed choice and precise adjustment of reaction conditions and led to isolation of the intermetallic cluster [Cu4Al4](Cp*)5(Mes) (1). Cluster 1 reacts with excess 3-hexyne to yield the triangular cluster [Cu2Al](Cp*)3 (2). The two embryonic [Cu4Al4](Cp*)5(Mes) and [Cu2Al](Cp*)3 clusters 1 and 2, respectively, were shown to be intermediates in the formation of an inseparable composite of the closely related clusters [Cu7Al6](Cp*)6 (3), [HCu7Al6](Cp*)6 (3H) and [Cu8Al6](Cp*)6 (4), which just differ by one Cu core atom. The radical nature of the open-shell superatomic [Cu7Al6](Cp*)6 cluster 3 is reflected in its reactivity towards addition of one Cu core atom leading to the closed shell superatom [Cu8Al6](Cp*)6 (4), and as well by its ability to undergo σ(C-H) and σ(Si-H) activation reactions of C6H5CH3 (toluene) and (TMS)3SiH (TMS = tris(trimethylsilyl)).
Collapse
Affiliation(s)
- Max Schütz
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Gemel
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Maximilian Muhr
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Roland A Fischer
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| |
Collapse
|
28
|
Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213576] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Gopalakrishnan M, Krittametaporn N, Yoshinari N, Konno T, Sangtrirutnugul P. Anion-templated assembly of multinuclear copper( ii)–triazole complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj02832k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anions were used as templates to construct copper(ii) clusters with different architectures.
Collapse
Affiliation(s)
- Mohan Gopalakrishnan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| | - Nuttaporn Krittametaporn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| | - Nobuto Yoshinari
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Preeyanuch Sangtrirutnugul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| |
Collapse
|