1
|
Kamachi M, Yonesato K, Okazaki T, Yanai D, Kikkawa S, Yamazoe S, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Synthesis of a Gold-Silver Alloy Nanocluster within a Ring-Shaped Polyoxometalate and Its Photocatalytic Property. Angew Chem Int Ed Engl 2024; 63:e202408358. [PMID: 38984565 DOI: 10.1002/anie.202408358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.
Collapse
Affiliation(s)
- Minori Kamachi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazaki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Liu Z, Fang JJ, Wang ZY, Xie YP, Lu X. Structural diversity of copper(I) alkynyl cluster-based coordination polymers utilizing bifunctional pyridine carboxylic acid ligands. NANOSCALE 2024; 16:17817-17824. [PMID: 39240170 DOI: 10.1039/d4nr02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The utilization of bifunctional ligands, specifically pyridine carboxylic acids, endowed with dual coordination sites, has been instrumental in the assembly of polymer materials. The ambidentate characteristics of these ligands play a crucial role in shaping the structure and framework of cluster-based polymers. In this study, we have synthesized a diverse array of multidimensional copper(I) alkynyl cluster-based polymers (CACPs) by employing four distinct pyridine carboxylic acids - namely, isonicotinic acid (INA), 6-isoquinolinecarboxylic acid (IQL), 4-pyridin-4-yl-benzoic acid (4-PyBA), and 3-pyridin-4-yl-benzoic acid (3-PyBA) - as linking ligands. These pyridine carboxylic acids not only serve as protective ligands but also act as pivotal linkers in constructing the cluster-based framework materials, exerting significant influence on the overall framework structures. Furthermore, the incorporation of auxiliary ligands has been shown to markedly impact the structural integrity and framework architecture of the CACPs. This study elucidates the indispensable role of pyridine carboxylic acids in the construction and stabilization of cluster-based framework materials, thereby advancing the frontier of research in metal cluster-based framework material synthesis.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
3
|
Gao J, Zhang F, Zhang X. A 66-Nuclear All-Alkynyl Protected Peanut-Shaped Silver(I)/Copper(I) Heterometallic Nanocluster: Intermediate in Copper-Catalyzed Alkyne-Azide Cycloaddition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400377. [PMID: 38561956 PMCID: PMC11165478 DOI: 10.1002/advs.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Ligand-protected heterometallic nanoclusters in contrast to homo-metal counterparts show more broad applications due to the synergistic effect of hetero-metals but their controllable syntheses remain a challenge. Among heterometallic nanoclusters, monovalent Ag-Cu compounds are rarely explored due to much difference of Ag(I) and Cu(I) such as atom radius, coordination habits, and redox potential. Encouraged by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, comproportionation reaction of Cu(II)X2 and Cu(0) in the presence of (PhC≡CAg)n complex and molybdate generated a core-shell peanut-shaped 66-nuclear Ag(I)-Cu(I) heterometallic nanocluster, [(Mo4O16)2@Cu12Ag54(PhC≡C)50] (referred to as Ag54Cu12). The structure and composition of Ag-Cu heterometallic nanocluster are fully characterized. X-ray single crystal diffraction reveals that Ag54Cu12 has a peanut-shaped silver(I)/copper(I) heterometallic nanocage protected by fifty phenylacetylene ligands in µ3-modes and encapsulated two mutually twisted tetramolybdates. Heterometallic nanocage contains a 54-Ag-atom outer ellipsoid silver cage decorated by 12 copper inside wall. Nanosized Ag54Cu12 is a n-type narrow-band-gap semiconductor with a good photocurrent response. Preliminary experiments demonstrates that Ag54Cu12 itself and activated carbon supported Ag54Cu12/C are effective catalysts for 1,3-dipole cycloaddition between alkynes and azides at ambient conditions. The work provides not only a new synthetic route toward Ag(I)-Cu(I) nanoclusters but also an important heterometallic intermediate in CuAAC catalytic reaction.
Collapse
Affiliation(s)
- Jin‐Ping Gao
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
| | - Fu‐Qiang Zhang
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
| | - Xian‐Ming Zhang
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
- College of ChemistryTaiyuan University of TechnologyTaiyuan030024P. R. China
| |
Collapse
|
4
|
Sampei H, Akiyama H, Saegusa K, Yamaguchi M, Ogo S, Nakai H, Ueda T, Sekine Y. Factors governing the protonation of Keggin-type polyoxometalates: influence of the core structure in clusters. Dalton Trans 2024; 53:8576-8583. [PMID: 38655658 DOI: 10.1039/d4dt00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atomic substitution is a promising approach for controlling structures and properties for developing clusters with desired responses. Although many possible coordination candidates could be deduced for substitution, not all can be prepared. Therefore, predicting the correlation between structures and physical properties is important prior to synthesis. In this study, regarding Keggin-type polyoxometalates (POMs) as a model cluster, the dominant factors affecting the protonation were investigated by atomic substitutions and geometry changes. The valence of Keggin-type POMs and the constituent elements of the cluster shell structure affect the charge and potential distribution, which change the protonation sites. Furthermore, the valence of Keggin-type POMs and the bond length between the core and shell structure determine the protonation energy. These factors also affect the HOMO-LUMO gap, which governs photochemical and redox reactions. These governing factors derived from actual parameters of the α-isomer of Keggin-type POMs enabled us to deduce the protonation energy of the β-isomer, which is more difficult to prepare and isolate than the α-isomer.
Collapse
Affiliation(s)
- Hiroshi Sampei
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Hiromu Akiyama
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Koki Saegusa
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Masahiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Shuhei Ogo
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Tadaharu Ueda
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
- MEDi Center, Kochi University, Kochi 780-0842, Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| |
Collapse
|
5
|
Biswas S, Negishi Y. Silver Cluster Assembled Materials: A Model-Driven Perspective on Recent Progress, with a Spotlight on Ag 12 Cluster Assembly. CHEM REC 2024; 24:e202400052. [PMID: 38775236 DOI: 10.1002/tcr.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/09/2024] [Indexed: 05/29/2024]
Abstract
The exploration of individual nanoclusters is rapidly advancing, despite stability concerns. To address this challenge, the assembly of cluster nodes through linker molecules has been successfully implemented. However, the linking of the cluster nodes itself introduces a multitude of possibilities, especially when additional factors come into play. While this method proves effective in enhancing material stability, the specific reasons behind its success remain elusive. In our laboratory, we have undertaken extensive studies on Ag cluster-assembled materials. So, here our goal is to establish a model system that allows for the discernment of various factors, eliminating unnecessary complexities during the linking approach. So, we hope that the systematic discourse presented in here will contribute significantly to future endeavors, helping to set clear priorities, and provide solutions to concerns that arise when working with a model system.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
| |
Collapse
|
6
|
Hennrich F, Ito S, Weis P, Neumaier M, Takano S, Tsukuda T, Kappes MM. Cyclic ion mobility of doped [MAu 24L 18] 2- superatoms and their fragments (M = Ni, Pd and Pt; L = alkynyl). Phys Chem Chem Phys 2024; 26:8408-8418. [PMID: 38407473 DOI: 10.1039/d3cp06192b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Collision-induced dissociation and high-resolution cyclic ion mobility mass spectrometry, along with quantum chemical calculations and trajectory simulations, were used to compare the structures of isolated [MAu24(CCR)18]2-, M = Ni, Pd, or Pt, and their associated fragment ions. The three different alkynyl ligand-stabilized (CCR, R = 3,5-(CF3)2C6H3), transition metal-doped, gold cluster dianions showed mutually resolvable collision cross sections (CCS), which were ordered consistently with their molecular structures from X-ray crystallography. All three [MAu24(CCR)18]2- species fragment by sequential diyne loss to form [MAu24(CCR)18-n]2-, with n up to 12. The resultant fragment isomer distributions are significantly n- and M-dependent, and hint at a process involving concerted elimination of adjacent ligands. In particular [NiAu24(CCR)18]2- also fragments to generate alkyne-oligomers, an inference supported by the parallel observation of precursor dianion isomerization as collision energy is increased.
Collapse
Affiliation(s)
- Frank Hennrich
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany.
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany.
| | - Marco Neumaier
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
7
|
Masuda S, Sakamoto K, Tsukuda T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. NANOSCALE 2024; 16:4514-4528. [PMID: 38294320 DOI: 10.1039/d3nr05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gold and silver nanoclusters (NCs) composed of <200 atoms are novel catalysts because their catalytic properties differ significantly from those of the corresponding bulk surface and can be dramatically tuned by the size (number of atoms). Doping with other metals is a promising approach for improving the catalytic performance of Au and Ag NCs. However, elucidation of the origin of the doping effects and optimization of the catalytic performance are hampered by the technical challenge of controlling the number and location of the dopants. In this regard, atomically precise Au or Ag (Au/Ag) NCs protected by ligands or polymers have recently emerged as an ideal platform because they allow regioselective substitution of single Au/Ag constituent atoms while retaining the size and morphology of the NC. Heterogeneous Au/Ag NC catalysts doped with a single atom can also be prepared by controlled calcination of ligand-protected NCs on solid supports. Comparison of thermal catalysis, electrocatalysis, and photocatalysis between the single-atom-doped and undoped Au/Ag NCs has revealed that the single-atom doping effect can be attributed to an electronic or geometric origin, depending on the dopant element and position. This minireview summarizes the recent progress of the synthesis and catalytic application of single-atom-doped, atomically precise Au/Ag NC catalysts and provides future prospects for the rational development of active and selective metal NC catalysts.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Okada T, Kawawaki T, Takemae K, Tomihari S, Kosaka T, Niihori Y, Negishi Y. Tiara-like Hexanuclear Nickel-Platinum Alloy Nanocluster. J Phys Chem Lett 2024; 15:1539-1545. [PMID: 38299566 PMCID: PMC10860137 DOI: 10.1021/acs.jpclett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Tiara-like metal nanoclusters (TNCs) have attracted a great deal of attention because of their high stability and easy synthesis under atmospheric conditions as well as their high activity in various catalytic reactions. Alloying is one of the methods that can be used to control the physicochemical properties of nanoclusters, but few studies have reported on alloy TNCs. In this study, we synthesized alloy TNCs [NixPt6-x(PET)12, where x = 1-5 and PET = 2-phenylethanethiolate] consisting of thiolate, nickel (Ni), and platinum (Pt). We further evaluated the stability, geometric structure, and electronic structure by high-performance liquid chromatography and density functional theory calculations. The results revealed that NixPt6-x(PET)12 has a distorted structure and is therefore less stable than single-metal TNCs.
Collapse
Affiliation(s)
- Tomoshige Okada
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Kana Takemae
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Shiho Tomihari
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Taiga Kosaka
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Yoshiki Niihori
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| |
Collapse
|
9
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
10
|
Horita Y, Hossain S, Ishimi M, Zhao P, Sera M, Kawawaki T, Takano S, Niihori Y, Nakamura T, Tsukuda T, Ehara M, Negishi Y. Clarifying the Electronic Structure of Anion-Templated Silver Nanoclusters by Optical Absorption Spectroscopy and Theoretical Calculation. J Am Chem Soc 2023; 145:23533-23540. [PMID: 37862604 PMCID: PMC10623570 DOI: 10.1021/jacs.3c07194] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
Electronic structures of anion-templated silver nanoclusters (Ag NCs) are not well understood compared to conventional, template-free Ag NCs. In this study, we synthesized three new anion-templated Ag NCs, namely [S@Ag17(S-4CBM)15(PPh3)5]0, [S@Ag18(S-4CBM)16(PPh3)8]0, and [Cl@Ag18(S-4CBM)16(PPh3)8][PPh4], where S-4CBM = 4-chlorobenzene methanethiolate, and single-crystal X-ray crystallography revealed that they have S@Ag6, S@Ag10, and Cl@Ag10 cores, respectively. Investigation of their electronic structures by optical spectroscopy and theoretical calculations elucidated the following unique features: (1) their electronic structures are different from those of template-free Ag NCs described by the superatomic concept; (2) optical absorption in the range of 550-400 nm for S2--templated Ag NCs is attributed to the charge transitions from S2--templated Ag-cage orbitals to the s-shaped orbital in the S2- moiety; (3) the Cl--templated Ag NCs can be viewed as [Cl@Ag18(S-4CBM)16(PPh3)8]0[PPh4]0 rather than the ion pair [Cl@Ag18(S-4CBM)16(PPh3)8]-[PPh4]+; and (4) singlet-coupled singly occupied orbitals are involved in the optical absorption of the Cl--templated Ag NC.
Collapse
Affiliation(s)
- Yusuke Horita
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Ishimi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Pei Zhao
- Institute
for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Miyu Sera
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshiki Niihori
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Ehara
- Institute
for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
12
|
Hu F, Guan ZJ, Yuan SF, Wang QM. Alkynyl-Protected Bimetallic Nanoclusters with a Hybrid Mackay Icosahedral Ag 42 Cu 12 Cl Kernel and an Octahedral Ag 22 Cu 12 Kernel. Chem Asian J 2023; 18:e202300605. [PMID: 37550250 DOI: 10.1002/asia.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
A facile strategy that directly reduces alkynyl-silver precursors and copper salts for the synthesis of bimetallic nanoclusters using the weak reducing agent Ph2 SiH2 is demonstrated. Two alkynyl-protected concentric-shell nanoclusters, (Ph4 P)2 [Ag22 Cu12 (C≡CR)28 ] and (Ph4 P)3 [Ag42 Cu12 Cl(C≡CR)36 ] (Ag22 Cu12 and Ag42 Cu12 Cl, R=bis(trifluoromethyl)phenyl), were successfully obtained and characterized by single-crystal X-ray diffraction and electro-spray ionization mass spectrometry. For the first time, a hybrid 55-atom two-shell Mackay icosahedron was found in Ag42 Cu12 Cl, which is icosahedral M54 Cl instead of M55 . The incorporation of a chloride in the metal icosahedron contributes to the stability of the cluster from both electronic and geometric aspects. Alkynyl ligands show various binding-modes including linear "RC≡C-Cu-C≡CR" staple motifs.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
13
|
Huang RW, Song X, Chen S, Yin J, Maity P, Wang J, Shao B, Zhu H, Dong C, Yuan P, Ahmad T, Mohammed OF, Bakr OM. Radioluminescent Cu-Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging. J Am Chem Soc 2023. [PMID: 37335564 DOI: 10.1021/jacs.3c02612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Zero-dimensional (0D) scintillation materials have drawn tremendous attention due to their inherent advantages in the fabrication of flexible high-energy radiation scintillation screens by solution processes. Although considerable progress has been made in the development of 0D scintillators, such as the current leading lead-halide perovskite nanocrystals and quantum dots, challenges still persist, including potential issues with self-absorption, air stability, and eco-friendliness. Here, we present a strategy to overcome those limitations by synthesis and self-assembly of a new class of scintillators based on metal nanoclusters. We demonstrate the gram-scale synthesis of an atomically precise nanocluster with a Cu-Au alloy core exhibiting high phosphorescence quantum yield, aggregation-induced emission enhancement (AIEE) behavior, and intense radioluminescence. By controlling solvent interactions, the AIEE-active nanoclusters were self-assembled into submicron spherical superparticles in solution, which we exploited as a novel building block for flexible particle-deposited scintillation films with high-resolution X-ray imaging performance. This work reveals metal nanoclusters and their self-assembled superstructures as a promising class of scintillators for practical applications in high-energy radiation detection and imaging.
Collapse
Affiliation(s)
- Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Song
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Shulin Chen
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Ploytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiayi Wang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bingyao Shao
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hongwei Zhu
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taimoor Ahmad
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Liao JH, Chiu TH, Liang H, Kahlal S, Saillard JY, Liu CW. Galvanic replacement-induced introduction of a heteroligand into bimetallic and trimetallic nanoclusters. NANOSCALE 2023; 15:6121-6125. [PMID: 36919780 DOI: 10.1039/d3nr00509g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heteroleptic 8-electron silver-rich alloy nanoclusters, [Au@Au4Ag12(dtp)7(PPh3)4]2+ (1) and [Pt@Au4Ag11(dtp)7(PPh3)4] (2), were successfully synthesized via a galvanic replacement reaction of 1,1-dithiolate-protected M@Ag20 (M = Au and Pt) nanoclusters with Au(I)-phosphine salts, leading to the alteration of the cluster nuclearity and geometry of shell skeletons but retaining the same 8-electron count.
Collapse
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
15
|
Cesari C, Berti B, Bortoluzzi M, Femoni C, Funaioli T, Vivaldi FM, Iapalucci MC, Zacchini S. From M 6 to M 12, M 19 and M 38 molecular alloy Pt-Ni carbonyl nanoclusters: selective growth of atomically precise heterometallic nanoclusters. Dalton Trans 2023; 52:3623-3642. [PMID: 36866767 DOI: 10.1039/d2dt03607j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Heterometallic Chini-type clusters [Pt6-xNix(CO)12]2- (x = 0-6) were obtained by reactions of [Pt6(CO)12]2- with Ni-clusters such as [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, or from [Pt9(CO)18]2- and [Ni6(CO)12]2-. The Pt/Ni composition of [Pt6-xNix(CO)12]2- (x = 0-6) depended on the nature of the reagents employed and their stoichiometry. Reactions of [Pt9(CO)18]2- with [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, as well as reactions of [Pt12(CO)24]2- with [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, afforded [Pt9-xNix(CO)18]2- (x = 0-9) species. [Pt6-xNix(CO)12]2- (x = 1-5) were converted into [Pt12-xNix(CO)21]4- (x = 2-10) upon heating in CH3CN at 80 °C, with almost complete retention of the Pt/Ni composition. Reaction of [Pt12-xNix(CO)21]4- (x ≈ 8) with HBF4·Et2O afforded the [HPt14+xNi24-x(CO)44]5- (x ≈ 0.7) nanocluster. Finally, [Pt19-xNix(CO)22]4- (x = 2-6) could be obtained by heating [Pt9-xNix(CO)18]2- (x = 1-3) in CH3CN at 80 °C, or [Pt6-xNix(CO)12]2- (2-4) in DMSO at 130 °C. The molecular structures of these new alloy nanoclusters have been determined by single crystal X-ray diffraction. The site preference of Pt and Ni within their metal cages has been computationally investigated. The electrochemical and IR spectroelectrochemical behavior of [Pt19-xNix(CO)22]4- (x = 3.11) has been studied and compared to the isostructural homometallic nanocluster [Pt19(CO)22]4-.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federico Maria Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
16
|
Kawawaki T, Akinaga Y, Yazaki D, Kameko H, Hirayama D, Negishi Y. Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry 2023; 29:e202203387. [PMID: 36524615 PMCID: PMC10107262 DOI: 10.1002/chem.202203387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Suppressing the amount of carbon dioxide in the atmosphere is an essential measure toward addressing global warming. Specifically, the photocatalytic CO2 reduction reaction (CRR) is an effective strategy because it affords the conversion of CO2 into useful carbon feedstocks by using sunlight and water. However, the practical application of photocatalyst-promoting CRR (CRR photocatalysts) requires significant improvement of their conversion efficiency. Accordingly, extensive research is being conducted toward improving semiconductor photocatalysts, as well as cocatalysts that are loaded as active sites on the photocatalysts. In this review, we summarize recent research and development trends in the improvement of cocatalysts, which have a significant impact on the catalytic activity and selectivity of photocatalytic CRR. We expect that the advanced knowledge provided on the improvement of cocatalysts for CRR in this review will serve as a general guideline to accelerate the development of highly efficient CRR photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daichi Yazaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Hinano Kameko
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daisuke Hirayama
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
17
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
18
|
Molecular Fe, CO and Ni carbide carbonyl clusters and Nanoclusters†. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Yacaman MJ, Velazquez-Salazar JJ, Mendoza-Cruz R, Lehr A. The role of twinning in multi metallic alloys at the nanoscale. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Biswas S, Das AK, Manna SS, Pathak B, Mandal S. Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality. Chem Sci 2022; 13:11394-11404. [PMID: 36320589 PMCID: PMC9533413 DOI: 10.1039/d2sc04390d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 09/02/2023] Open
Abstract
To acquire the atomic design of new functional Ag(i) nanoclusters (NCs), a new synthetic approach of site-specific alloying has been unveiled, by which the neutral CO2 templated Ag20 core is confined through Cu containing two peripheral motif units. The impact of surface charge, size and shape of the template on the self-assembly of Ag(i) has been precisely controlled here for the first time and as a result, a similar pentagonal gyrobicupola-like Ag20 core is formed while varying the templates (S2-, CO3 2- and CO2). However, the surface charge generated on the Ag(i) core due to the presence of a neutral template opens up the possibility of this novel alloying process. The introduction of strongly interacted peripheral motif units (DMA-CuS-) on the Ag20 core enforces more rigidity in the skeleton that reduces the probability of non-radiative transition in the excited state by lowering the intramolecular vibration. In addition to this, the incorporation of electron-donating peripheral motif units modulates the frontier molecular arrangement that helps in attaining the synergy which would ultimately turn on the room-temperature emission properties. The electron-donating effect of the peripheral motif units further leads to a sharp reduction of the bandgap and the symmetric position of the heterometal in the cluster minimizes the intercluster distances which further influences the intercluster charge carrier transport. So, the precise structure-property correlation with this novel synthetic approach will pave the way for a well-functioning NC design.
Collapse
Affiliation(s)
- Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| |
Collapse
|
21
|
Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, Zacchini S. 2-D Molecular Alloy Ru-M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorg Chem 2022; 61:14726-14741. [PMID: 36069711 PMCID: PMC9490753 DOI: 10.1021/acs.inorgchem.2c02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/28/2022]
Abstract
The reactions of [HRu3(CO)11]- (1) with M(I) (M = Cu, Ag, and Au) compounds such as [Cu(CH3CN)4][BF4], AgNO3, and Au(Et2S)Cl afford the 2-D molecular alloy clusters [CuRu6(CO)22]- (2), [AgRu6(CO)22]- (3), and [AuRu5(CO)19]- (4), respectively. The reactions of 2-4 with PPh3 result in mixtures of products, among which [Cu2Ru8(CO)26]2- (5), Ru4(CO)12(CuPPh3)4 (6), Ru4(CO)12(AgPPh3)4 (7), Ru(CO)3(PPh3)2 (8), and HRu3(OH)(CO)7(PPh3)3 (9) have been isolated and characterized. The molecular structures of 2-6 and 9 have been determined by single-crystal X-ray diffraction. The metal-metal bonding within 2-5 has been computationally investigated by density functional theory methods. In addition, the [NEt4]+ salts of 2-4 have been tested as catalyst precursors for transfer hydrogenation on the model substrate 4-fluoroacetophenone using iPrOH as a solvent and a hydrogen source.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’
Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Francesca Forti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Lisa Gubbels
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| |
Collapse
|
22
|
Xi L, Zhang X, Chen Y, Peng J, Liu M, Huo D, Li G, He H. A fluorescence turn-on strategy to achieve detection of captopril based on Ag nanoclusters. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cesari C, Berti B, Funaioli T, Femoni C, Iapalucci MC, Pontiroli D, Magnani G, Riccò M, Bortoluzzi M, Vivaldi FM, Zacchini S. Atomically Precise Platinum Carbonyl Nanoclusters: Synthesis, Total Structure, and Electrochemical Investigation of [Pt 27(CO) 31] 4- Displaying a Defective Structure. Inorg Chem 2022; 61:12534-12544. [PMID: 35920640 PMCID: PMC9387524 DOI: 10.1021/acs.inorgchem.2c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/30/2022]
Abstract
The molecular Pt nanocluster [Pt27(CO)31]4- (14-) was obtained by thermal decomposition of [Pt15(CO)30]2- in tetrahydrofuran under a H2 atmosphere. The reaction of 14- with increasing amounts of HBF4·Et2O afforded the previously reported [Pt26(CO)32]2- (32-) and [Pt26(CO)32]- (3-). The new nanocluster 14- was characterized by IR and UV-visible spectroscopy, single-crystal X-ray diffraction, direct-current superconducting quantum interference device magnetometry, cyclic voltammetry, IR spectroelectrochemistry (IR SEC), and electrochemical impedance spectroscopy. The cluster displays a cubic-close-packed Pt27 framework generated by the overlapping of four ABCA layers, composed of 3, 7, 11, and 6 atoms, respectively, that encapsulates a fully interstitial Pt4 tetrahedron. One Pt atom is missing within layer 3, and this defect (vacancy) generates local deformations within layers 2 and 3. These local deformations tend to repair the defect (missing atom) and increase the number of Pt-Pt bonding contacts, minimizing the total energy. The cluster 14- is perfectly diamagnetic and displays a rich electrochemical behavior. Indeed, six different oxidation states have been characterized by IR SEC, unraveling the series of 1n- (n = 3-8) isostructural nanoclusters. Computational studies have been carried out to further support the interpretation of the experimental data.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Beatrice Berti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Tiziana Funaioli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Daniele Pontiroli
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Giacomo Magnani
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Mauro Riccò
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’Foscari
University of Venice, Via Torino 155, Mestre (Ve) 30175, Italy
| | - Federico Maria Vivaldi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
24
|
Truttmann V, Drexler H, Stöger‐Pollach M, Kawawaki T, Negishi Y, Barrabés N, Rupprechter G. CeO 2 Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem 2022; 14:e202200322. [PMID: 36035519 PMCID: PMC9400996 DOI: 10.1002/cctc.202200322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Indexed: 11/15/2022]
Abstract
Monolayer protected Au nanocluster catalysts are known to undergo structural changes during catalytic reactions, including dissociation and migration of ligands onto the support, which strongly affects their activity and stability. To better understand how the nature of ligands influences the catalytic activity of such catalysts, three types of ceria supported Au nanoclusters with different kinds of ligands (thiolates, phosphines and a mixture thereof) have been studied, employing CO oxidation as model reaction. The thiolate-protected Au25/CeO2 showed significantly higher CO conversion after activation at 250 °C than the cluster catalysts possessing phosphine ligands. Temperature programmed oxidation and in situ infrared spectroscopy revealed that while the phosphine ligands seemed to decompose and free Au surface was exposed, temperatures higher than 250 °C are required to efficiently remove them from the whole catalyst system. Moreover, the presence of residues on the support seemed to have much greater influence on the reactivity than the gold particle size.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Hedda Drexler
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Michael Stöger‐Pollach
- University Service Center for Transmission Electron Microscopy (USTEM)TU WienWiedner Hauptstraße 8–101040ViennaAustria
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Noelia Barrabés
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | | |
Collapse
|
25
|
Yan H, Xiang H, Liu J, Cheng R, Ye Y, Han Y, Yao C. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200812. [PMID: 35403353 DOI: 10.1002/smll.202200812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles occupy an important position in electrocatalysis. Unfortunately, by using conventional synthetic methodology, it is a great challenge to realize the monodisperse composition/structure of metal nanoparticles at the atomic level, and to establish correlations between the catalytic properties and the structure of individual catalyst particles. For the study of well-defined nanocatalysts, great advances have been made for the successful synthesis of nanoparticles with atomic precision, notably ligand-passivated metal nanoclusters. Such well-defined metal nanoclusters have become a type of model catalyst and have shown great potential in catalysis research. In this review, the authors summarize the advances in the utilization of atomically precise metal nanoclusters for electrocatalysis. In particular, the factors (e.g., size, metal doping/alloying, ligand engineering, support materials as well as charge state of clusters) affecting selectivity and activity of catalysts are highlighted. The authors aim to provide insightful guidelines for the rational design of electrocatalysts with high performance and perspectives on potential challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiaohu Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Ranran Cheng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yongqi Ye
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
26
|
Negishi Y, Horihata H, Ebina A, Miyajima S, Nakamoto M, Ikeda A, Kawawaki T, Hossain S. Selective formation of [Au 23(SPh t Bu) 17] 0, [Au 26Pd(SPh t Bu) 20] 0 and [Au 24Pt(SC 2H 4Ph) 7(SPh t Bu) 11] 0 by controlling ligand-exchange reaction. Chem Sci 2022; 13:5546-5556. [PMID: 35694356 PMCID: PMC9116332 DOI: 10.1039/d2sc00423b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
To use atomically precise metal nanoclusters (NCs) in various application fields, it is essential to establish size-selective synthesis methods for the metal NCs. Studies on thiolate (SR)-protected gold NCs (Au n (SR) m NCs) revealed that the atomically precise Au n (SR) m NC, which has a different chemical composition from the precursor, can be synthesized size-selectively by inducing transformation in the framework structure of the metal NCs by a ligand-exchange reaction. In this study, we selected the reaction of [Au25(SC2H4Ph)18]- (SC2H4Ph = 2-phenylethanethiolate) with 4-tert-butylbenzenethiol ( t BuPhSH) as a model ligand-exchange reaction and attempted to obtain new metal NCs by changing the amount of thiol, the central atom of the precursor NCs, or the reaction time from previous studies. The results demonstrated that [Au23(SPh t Bu)17]0, [Au26Pd(SPh t Bu)20]0 (Pd = palladium) and [Au24Pt(SC2H4Ph)7(SPh t Bu)11]0 (Pt = platinum) were successfully synthesized in a high proportion. To best of our knowledge, no report exists on the selective synthesis of these three metal NCs. The results of this study show that a larger variety of metal NCs could be synthesized size-selectively than at present if the ligand-exchange reaction is conducted while changing the reaction conditions and/or the central atoms of the precursor metal NCs from previous studies.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Hikaru Horihata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Mana Nakamoto
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
27
|
Shi WQ, Guan ZJ, Li JJ, Han XS, Wang QM. Site-specific doping of silver atoms into a Au 25 nanocluster as directed by ligand binding preferences. Chem Sci 2022; 13:5148-5154. [PMID: 35655555 PMCID: PMC9093122 DOI: 10.1039/d2sc00012a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
For the first time site-specific doping of silver into a spherical Au25 nanocluster has been achieved in [Au19Ag6(MeOPhS)17(PPh3)6] (BF4)2 (Au19Ag6) through a dual-ligand coordination strategy. Single crystal X-ray structural analysis shows that the cluster has a distorted centered icosahedral Au@Au6Ag6 core of D 3 symmetry, in contrast to the I h Au@Au12 kernel in the well-known [Au25(SR)18]- (R = CH2CH2Ph). An interesting feature is the coexistence of [Au2(SPhOMe)3] dimeric staples and [P-Au-SPhOMe] semi-staples in the title cluster, due to the incorporation of PPh3. The observation of only one double-charged peak in ESI-TOF-MS confirms the ordered doping of silver atoms. Au19Ag6 is a 6e system showing a distinct absorption spectrum from [Au25(SR)18]-, that is, the HOMO-LUMO transition of Au19Ag6 is optically forbidden due to the P character of the superatomic frontier orbitals.
Collapse
Affiliation(s)
- Wan-Qi Shi
- Department of Chemistry, Tsinghua University Beijing 100084 PR China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University Beijing 100084 PR China
| | - Jiao-Jiao Li
- Department of Chemistry, Tsinghua University Beijing 100084 PR China
| | - Xu-Shuang Han
- Department of Chemistry, Tsinghua University Beijing 100084 PR China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University Beijing 100084 PR China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| |
Collapse
|
28
|
Kawawaki T, Kawachi M, Yazaki D, Akinaga Y, Hirayama D, Negishi Y. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:344. [PMID: 35159689 PMCID: PMC8838403 DOI: 10.3390/nano12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
With global warming and the depletion of fossil resources, our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this, the photocatalytic water-splitting reaction, which produces H2 from water and solar energy through photocatalysis, has attracted much attention. However, for practical use, the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light, which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis, researchers in the various fields must be employed in this type of study to achieve this. However, for researchers in fields other than catalytic chemistry, ceramic (semiconductor) materials chemistry, and electrochemistry to participate in this field, new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore, in this review, we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary, we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuki Akinaga
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Silalahi RPB, Wang Q, Liao J, Chiu T, Wu Y, Wang X, Kahlal S, Saillard J, Liu CW. Reactivities of Interstitial Hydrides in a Cu
11
Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rhone P. Brocha Silalahi
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Jian‐Hong Liao
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Tzu‐Hao Chiu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Ying‐Yann Wu
- Institute of Chemistry Academia Sinica Taipei 11528 Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - C. W. Liu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| |
Collapse
|
30
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
31
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
32
|
Silalahi RPB, Wang Q, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Saillard JY, Liu CW. Reactivities of Interstitial Hydrides in a Cu 11 Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2021; 61:e202113266. [PMID: 34755440 DOI: 10.1002/anie.202113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Indexed: 11/10/2022]
Abstract
In sharp contrast to surface hydrides, reactivities of interstitial hydrides are difficult to explore. When treated with a metal ion (Cu+ , Ag+ , and Au+ ), the stable CuI dihydride template [Cu11 H2 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ] (H2 Cu11 ) generates surprisingly three very different compounds, namely [CuH2 Cu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ]+ (1), [AgH2 Cu14 {S2 P(Oi Pr)2 }6 ((C≡CPh)6 ]+ (2), and [AuCu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 Cl] (3). Compounds 1 and 2 are both MI species and maintain the same number of hydride ligands as their H2 Cu11 precursor. Neutron diffraction revealed the first time a trigonal-pyramidal hydride coordination mode in the AgCu3 environment of 2. 3 has no hydride and exhibits a mixed-valent [AuCu11 ]10+ metal core, making it a two-electron superatom.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Ying-Yann Wu
- Institute of Chemistry, Academia Sinica, Taipei, 11528, Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| |
Collapse
|
33
|
Ma X, Xiong L, Qin L, Tang Y, Ma G, Pei Y, Tang Z. A homoleptic alkynyl-protected [Ag 9Cu 6( t BuC[triple bond, length as m-dash]C) 12] + superatom with free electrons: synthesis, structure analysis, and different properties compared with the Au 7Ag 8 cluster in the M 15 + series. Chem Sci 2021; 12:12819-12826. [PMID: 34703569 PMCID: PMC8494057 DOI: 10.1039/d1sc03679c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
We report the first homoleptic alkynyl-protected AgCu superatomic nanocluster [Ag9Cu6( t BuC[triple bond, length as m-dash]C)12]+ (NC 1, also Ag9Cu6 in short), which has a body-centered-cubic structure with a Ag1@Ag8@Cu6 metal core. Such a configuration is reminiscent of the reported AuAg bimetallic nanocluster [Au1@Ag8@Au6( t BuC[triple bond, length as m-dash]C)12]+ (NC 2, also Au7Ag8 in short), which is also synthesized by an anti-galvanic reaction (AGR) approach with a very high yield for the first time in this study. Despite a similar Ag8 cube for both NCs, structural anatomy reveals that there are some subtle differences between NCs 1 and 2. Such differences, plus the different M1 kernel and M6 octahedron, lead to significantly different optical absorbance features for NCs 1 and 2. Density functional theory calculations revealed the LUMO and HOMO energy levels of NCs 1 and 2, where the characteristic absorbance peaks can be correlated with the discrete molecular orbital transitions. Finally, the stability of NCs 1 and 2 at different temperatures, in the presence of an oxidant or Lewis base, was investigated. This study not only enriches the M15 + series, but also sets an example for correlating the structure-property relationship in alkynyl-protected bimetallic superatomic clusters.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Hunan Province Xiangtan 411105 P. R. China
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Hunan Province Xiangtan 411105 P. R. China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
34
|
Huang JH, Si Y, Dong XY, Wang ZY, Liu LY, Zang SQ, Mak TCW. Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. J Am Chem Soc 2021; 143:12439-12444. [PMID: 34355894 DOI: 10.1021/jacs.1c05568] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a neutral fullerene-like core-shell homosilver Ag13@Ag20 nanocluster that is fully protected by an achiral bidentate thiolate ligand (9,12-dimercapto-1,2-closo-carborane, C2B10H10S2H2), which crystallizes in centrosymmetric space group R3̅. Continuous Cu doping in the dodecahedral shell first induced symmetry breaking to generate chiral Ag13@Ag20-nCun (6 ≥ n ≥ 2) containing two acetonitrile ligands in space group P212121, and then produced symmetric all-thiolated Ag13@Ag20-nCun (20 ≥ n ≥ 13) in the higher space group Im3̅. The selectively copper-doped Ag13@Ag20-nCun (6 ≥ n ≥ 2) cluster has its structure reorganized to a lower symmetry that shows chiroptical activity. Moreover, structural distortion of Ag13@Ag20-nCun (6 ≥ n ≥ 2) further expanded in chiral R-/S-propylene oxide, which induced a more prominent core-based CD response. This work revealed a novel mechanism of chirality generation at the atomic level through asymmetric shell-doping of metal nanoclusters, which provides new insight into the origin of chirality in inorganic nanostructures.
Collapse
Affiliation(s)
- Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
35
|
Tang L, Ma A, Zhang C, Liu X, Jin R, Wang S. Total Structure of Bimetallic Core–Shell [Au
42
Cd
40
(SR)
52
]
2−
Nanocluster and Its Implications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 P. R. China
| | - Along Ma
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Cheng Zhang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xuguang Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Shuxin Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
36
|
Tang L, Ma A, Zhang C, Liu X, Jin R, Wang S. Total Structure of Bimetallic Core-Shell [Au 42 Cd 40 (SR) 52 ] 2- Nanocluster and Its Implications. Angew Chem Int Ed Engl 2021; 60:17969-17973. [PMID: 34125983 DOI: 10.1002/anie.202106804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Bimetallic core-shell nanostructures hold great promise in elucidating the bimetallic synergism. However, it remains a challenge to construct atomically precise core-shell with high-valence active metals on the gold surface. In this work, we report the total structure of a [Au42 Cd40 (SR)52 ]2- core-shell nanocluster and multiple implications. Single crystal X-ray diffraction (SCXRD) reveals that the structure possesses a two-shelled Au6 @Au36 core and a closed cadmium shell of Cd40 , and the core-shell structure is then protected by 52 thiolate (-SR) ligands. The composition of the nanocluster is further confirmed by electrospray ionization mass spectrometry (ESI-MS). A catalytic test for styrene oxidation and a comparison with relevant nanoclusters reveal the surface effect on the catalytic activity and selectivity.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cheng Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuguang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
37
|
Goo ZL, Minami K, Yoshinari N, Konno T. Heterometallation of Photoluminescent Silver(I) Sulfide Nanoclusters Protected by Octahedral Iridium(III) Thiolates. Chem Asian J 2021; 16:2641-2647. [PMID: 34288528 DOI: 10.1002/asia.202100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Indexed: 11/11/2022]
Abstract
The recently-increasing interest in coinage metal clusters stems from their photophysical properties, which are controlled via heterometallation. Herein, we report homometallic AgI 46 S13 clusters protected by octahedral fac-[Ir(aet)3 ] (aet=2-aminoethanethiolate) molecules and their conversion to heterometallic AgI 43 MI 3 S13 (M=Cu, Au) clusters. The reactions of fac-[Ir(aet)3 ] with Ag+ and penicillamine produced [Ag46 S13 {Ir(aet)3 }14 ]20+ ([1]20+ ), where a spherical AgI 46 S13 cluster is covered by fac-[Ir(aet)3 ] octahedra through thiolato bridges. [1]20+ was converted to [Ag43 M3 S13 {Ir(aet)3 }14 ]20+ ([1M ]20+ ) with an AgI 43 MI 3 S13 cluster by treatment with M+ , retaining its overall structure. [1]20+ was photoluminescent and had an emission band ca. 690 nm that originated from an S-to-Ag charge transfer. While [1Cu ]20+ showed an emission band with a slightly higher energy of ca. 650 nm and a lower quantum yield, the emission band for [1Au ]20+ shifted to a much higher energy of ca. 590 nm with an enhanced quantum yield.
Collapse
Affiliation(s)
- Zi Lang Goo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Katsue Minami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
38
|
Brocha Silalahi RP, Chiu TH, Kao JH, Wu CY, Yin CW, Liu YC, Chen YJ, Saillard JY, Chiang MH, Liu CW. Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu-Ag and Cu-Au Nanoclusters via Copper Hydride Precursors. Inorg Chem 2021; 60:10799-10807. [PMID: 34236845 DOI: 10.1021/acs.inorgchem.1c01489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structural characteristics, and photophysical properties of luminescent Cu-rich bimetallic superatomic clusters [Au@Cu12(S2CNnPr2)6(C≡CPh)4]+ (1a+), [Au@Cu12{S2P(OR)2}6(C≡CPh)4]+ (2+), (2a+ = iPr; 2b+ = nPr), [Au@Cu12{S2P(C2H4Ph)2}6(C≡CPh)4]+ (2c+), and [Ag@Cu12{S2P(OnPr)2}6(C≡CPh)4]+ (3+) were studied. Compositionally uniform clusters 1+-3+ were isolated from the reaction of dithiolato-stabilized, polyhydrido copper clusters with phenylacetylene in the presence of heterometal salts. By using X-ray diffraction, the structures of 1a+, 2a+, 2b+, and 3+ were able to be determined. ESI-mass spectrometry and elemental analysis confirmed their compositions and purity. The structural characteristics of these clusters are similar with respect to displaying gold (or silver)-centered Cu12 cuboctahedra surrounded by six dithiocarbamate/dithiophosph(in)ate and four alkynyl ligands. The doping of Au and Ag atoms into the polyhydrido copper nanoclusters significantly enhances their PL quantum yields from Ag@Cu12 (0.58%) to Au@Cu12 (55%) at ambient temperature in solution. In addition, the electrochemical properties of the new alloys were investigated by cyclic voltammetry.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Jhen-Heng Kao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chun-Yen Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chi-Wei Yin
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | - Yu-Chiao Liu
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | | | - Ming-Hsi Chiang
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| |
Collapse
|
39
|
Tameike M, Niidome T, Niidome Y, Kurawaki J. Novel Photoluminescent Gold Complexes Prepared at Octanethiol–Water Interfaces: Control of Optical Properties by Addition of Silver Ions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mio Tameike
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Takuro Niidome
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yasuro Niidome
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Junichi Kurawaki
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
40
|
Takano S, Tsukuda T. Atomically-ordered Trimetallic Superatoms M@Au 6Ag 6 (M = Pd, Pt): Synthesis and Photoluminescence Properties. CHEM LETT 2021. [DOI: 10.1246/cl.210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
41
|
Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005328. [PMID: 33522090 DOI: 10.1002/smll.202005328] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yasunaga Hosokawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Daiki Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
42
|
He L, He X, Wang J, Fu C, Liang J. Ag 23Au 2 and Ag 22Au 3: A Model of Cocrystallization in Bimetal Nanoclusters. Inorg Chem 2021; 60:8404-8408. [PMID: 34078071 DOI: 10.1021/acs.inorgchem.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The field of cocrystalline nanoclusters stabilized by thiolates is in a period of rapid development. However, the types of cocrystallization have been limited to a few reported until now, so it is of great importance to investigate and understand the novel cocrystallographic structures. Herein, we design and synthesize a new type of cocrystallization, [Ag23Au2(2-EBT)18Ag22Au3(2-EBT)18]2-[2(PPh4)]2+, characterized by thermogravimetric analysis, X-ray photoelectron spectroscopy, and single-crystal X-ray crystallography. Interestingly, both of the cocrystallized nanoclusters show the same outer-shell geometric structure but diffenent cores (Ag11Au2 vs Ag10Au3). The cocrystal lattice exhibits a multilayer structure in which both of the cocrystallized nanoclusters and the counterion assemble in a layer-by-layer model. Meanwhile, the counterion is found to be critical for formation and stabilization of the target cocrystal. In addition, the target cocrystal shows high thermal stability, and this result possibly originates from the electrostatic and weak interactions in the cocrystals.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xinhai He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Junbo Wang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chong Fu
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Junhao Liang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| |
Collapse
|
43
|
Cesari C, Berti B, Bortoluzzi M, Femoni C, Iapalucci MC, Zacchini S. Heterometallic Ni-Pt Chini-Type Carbonyl Clusters: An Example of Molecular Random Alloy Clusters. Inorg Chem 2021; 60:8811-8825. [PMID: 34082535 PMCID: PMC8277170 DOI: 10.1021/acs.inorgchem.1c00752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The direct reactions
of homometallic [Ni6(CO)12]2– and [Pt6(CO)12]2– Chini
carbonyl clusters result in heterometallic Ni–Pt Chini-type
clusters of the general formula [Pt6–xNix(CO)12]2– (x = 0–6). Their molecular structures have
been determined by single-crystal X-ray diffraction (SC-XRD), showing
a common octahedral (staggered, D3d) structure analogous to that of [Ni6(CO)12]2–, whereas [Pt6(CO)12]2– displays a trigonal-prismatic (eclipsed, D3h) structure. This structural
change after replacing one single Pt with Ni may be classified as
an alloying effect, and it has been theoretically investigated by
DFT methods. Spectroscopic (IR and 195Pt and 13C NMR) and ESI-MS studies indicate that mixtures of [Pt6–xNix(CO)12]2– (x = 0–6) clusters are actually
present in solution, whose compositions may be varied in an almost
continuous way. Thus, they may be viewed as random alloy clusters
whose overall compositions depend on the stoichiometry of the reagents. Molecular Pt−Ni random alloy clusters
adopting a
Chini-type structure have been obtained upon mixing related homometallic
clusters and investigated by structural, spectroscopic, and theoretical
methods.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
44
|
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. NANOSCALE HORIZONS 2021; 6:409-448. [PMID: 33903861 DOI: 10.1039/d1nh00046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kataoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Momoko Hirata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuki Iwamatsu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
45
|
Wei J, Rodríguez-Kessler PL, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. On Heteronuclear Isoelectronic Alternatives to [Au13(dppe)5Cl2]3+: Electronic and Optical Properties of the 18-Electron Os@[Au12(dppe)5Cl2] Cluster from Relativistic Density Functional Theory Computations. Inorg Chem 2021; 60:8173-8180. [DOI: 10.1021/acs.inorgchem.1c00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianyu Wei
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Peter L. Rodríguez-Kessler
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8320000, Chile
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
- CNRS-Saint Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8320000, Chile
| |
Collapse
|
46
|
Li D, Wang G, Mei X. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst 2021; 145:7150-7161. [PMID: 33020766 DOI: 10.1039/d0an01538e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional cancer diagnosis strategies are not considered by most people until the last resort, which delays many cancer treatments leading to advanced stages. Tumor marker sensors show great potential for detecting cancer because of its cost-effective and harmless checking procedures. Normally, one tumor marker is detected each time by using one type of sensor, but the accuracy to declare cancer is not always satisfied. Metal nanoclusters are ultra-small nanomaterials with low toxicity, distinct optical properties, catalytic activities, and cost-effective performance. Some metal nanoclusters have been designed to detect more than one tumor marker in a single step. The consideration of combined parameters using such facile sensing strategies has the potential to simplify the test procedure, and increase the diagnostic accuracy of early cancer. Therefore, various sensing strategies for the multiplex detection of tumor markers using metal nanoclusters are summarized.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou, People's Republic of China.
| | | | | |
Collapse
|
47
|
Takano S, Tsukuda T. Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. J Am Chem Soc 2021; 143:1683-1698. [DOI: 10.1021/jacs.0c11465] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
48
|
Walsh AG, Zhang P. Thiolate-Protected Bimetallic Nanoclusters: Understanding the Relationship between Electronic and Catalytic Properties. J Phys Chem Lett 2021; 12:257-275. [PMID: 33332974 DOI: 10.1021/acs.jpclett.0c03252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiolate-protected metal nanoclusters, which are smaller than 2 nm and have a specific number of metal atoms, have been greatly investigated in areas such as catalysis, sensing, and energy conversion because of their unique chemical, optical, structural, and electronic properties. Doping monometallic nanoclusters with another metal offers the opportunity to enhance these properties even further. The atomic structure of thiolate-protected bimetallic nanoclusters has been thoroughly studied using various X-ray methods, but the electronic structures of these complexes are often under-discussed. This Perspective summarizes works examining the electronic properties (charge states and energy levels) of these materials using density functional theory, square-wave voltammetry, UV-vis spectroscopy, and X-ray photoelectron spectroscopy. This information is then related to the catalytic activities of these complexes in various representative reactions (e.g., carbon-carbon coupling, hydrogenation, and oxidation). The significance of the structure-property relationship between the electronic properties and the catalytic performance of thiolate-protected bimetallic nanoclusters is demonstrated.
Collapse
Affiliation(s)
- Andrew G Walsh
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
49
|
Kawawaki T, Kataoka Y, Ozaki S, Kawachi M, Hirata M, Negishi Y. Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chem Commun (Camb) 2020; 57:417-440. [PMID: 33350403 DOI: 10.1039/d0cc06809h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With global warming and the depletion of fossil resources, our fossil-fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as clean and renewable energy. Water-splitting photocatalysts can produce H2 from water using sunlight, which are almost infinite on the earth. However, further improvements are indispensable to enable their practical application. To improve the efficiency of the photocatalytic water-splitting reaction, in addition to improving the semiconductor photocatalyst, it is extremely effective to improve the cocatalysts (loaded metal nanoclusters, NCs) that enable the reaction to proceed on the photocatalysts. We have thus attempted to strictly control metal NCs on photocatalysts by introducing the precise-control techniques of metal NCs established in the metal NC field into research on water-splitting photocatalysts. Specifically, the cocatalysts on the photocatalysts were controlled by adsorbing atomically precise metal NCs on the photocatalysts and then removing the protective ligands by calcination. This work has led to several findings on the electronic/geometrical structures of the loaded metal NCs, the correlation between the types of loaded metal NCs and the water-splitting activity, and the methods for producing high water-splitting activity. We expect that the obtained knowledge will lead to clear design guidelines for the creation of practical water-splitting photocatalysts and thereby contribute to the construction of a hydrogen-energy society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Li Y, Taylor MG, Luo TY, Song Y, Rosi NL, Mpourmpakis G, Jin R. Heteroatom Tracing Reveals the 30-Atom Au-Ag Bimetallic Nanocluster as a Dimeric Structure. J Phys Chem Lett 2020; 11:7307-7312. [PMID: 32787300 DOI: 10.1021/acs.jpclett.0c01977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the formation of face-centered cubic (fcc) nanostructures at the atomic level remains a major task. With atomically precise nanoclusters (NCs) as model systems, herein we devised an atom-tracing strategy by heteroatom doping into Au30(SR)18 (SR = S-tC4H9) to label the specific positions in M30(SR)18 NCs (M = Au/Ag), which clearly reveals the dimeric nature of M30. Interestingly, the specific position is also consistent with the Ag-doping site in M21(SR)15. Electronic orbital analysis shows intrinsic orbital localization at the two specific positions in M30, which are decisive to the electronic structure of M30, regardless of Au or Ag occupancy. The fcc dimeric NC, which would not be discovered without Ag tracing, provides a possible explanation for the wide accessibility of nonsuperatomic Au-SR NCs.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael G Taylor
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yongbo Song
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|