1
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Mirshokraee SA, Muhyuddin M, Orsilli J, Berretti E, Lavacchi A, Lo Vecchio C, Baglio V, Viscardi R, Zaffora A, Di Franco F, Santamaria M, Olivi L, Pollastri S, Santoro C. Mono-, bi- and tri-metallic Fe-based platinum group metal-free electrocatalysts derived from phthalocyanine for oxygen reduction reaction in alkaline media. NANOSCALE 2024; 16:6531-6547. [PMID: 38488880 DOI: 10.1039/d4nr00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
In this manuscript, a comprehensive study is presented on Fe-based electrocatalysts with mono, bi, and tri-metallic compositions, emphasizing the influence of processing-structure correlations on the electrocatalytic activity for the oxygen reduction reaction (ORR) in the alkaline medium. These electrocatalysts were synthesized through the mixing of transition metal phthalocyanines (TM-Pc) with conductive carbon support, followed by controlled thermal treatment at specific temperatures (600 °C and 900 °C). An extensive analysis was conducted, employing various techniques, including X-ray Absorption Spectroscopy (XAS), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD), providing valuable insights into the structural characteristics of the synthesized nanoparticles. Importantly, an increase in the Fe-Pc weight percentage from 10% to 30% enhanced the ORR activity, although not proportionally. Furthermore, a comparative analysis between mono, bi, and tri-metallic samples subjected to different functionalization temperatures highlighted the superior electrocatalytic activity of electrocatalysts functionalized at 600 °C, particularly Fe 600 and Fe-Ni-Cu 600. These electrocatalysts featured Eon values of 0.96 V vs. RHE and E1/2 values of 0.9 V vs. RHE, with the added benefit of reduced anionic peroxide production. The potential of these Fe-based electrocatalysts to enhance ORR efficiency is underscored by this research, contributing to the development of more effective and sustainable electrocatalysts for energy conversion technologies.
Collapse
Affiliation(s)
- Seyed Ariana Mirshokraee
- Department of Materials Science, University of Milano-Bicocca, U5, Via Roberto Cozzi, 55, 20125, Milan, MI, Italy.
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca, U5, Via Roberto Cozzi, 55, 20125, Milan, MI, Italy.
| | - Jacopo Orsilli
- Department of Materials Science, University of Milano-Bicocca, U5, Via Roberto Cozzi, 55, 20125, Milan, MI, Italy.
| | - Enrico Berretti
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale Delle Ricerche (CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessandro Lavacchi
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale Delle Ricerche (CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Carmelo Lo Vecchio
- Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE), Consiglio Nazionale delle Ricerche (CNR), Via Salita S. Lucia sopra Contesse 5, Messina, 98126, Italy
| | - Vincenzo Baglio
- Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE), Consiglio Nazionale delle Ricerche (CNR), Via Salita S. Lucia sopra Contesse 5, Messina, 98126, Italy
| | - Rosanna Viscardi
- Casaccia Research Center, ENEA, Santa Maria di Galeria, 00123, Rome, Italy
| | - Andrea Zaffora
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Francesco Di Franco
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Monica Santamaria
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Luca Olivi
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Simone Pollastri
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca, U5, Via Roberto Cozzi, 55, 20125, Milan, MI, Italy.
| |
Collapse
|
3
|
Qiao Y, Zhang Y, Xia S, Wei C, Chen Y, Chen S, Yan J. Stabilizing High Density Cu Active Sites with ZrO 2 Quantum Dots as Chemical Ligand in N-doped Porous Carbon Nanofibers for Efficient ORR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206823. [PMID: 36631275 DOI: 10.1002/smll.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The emerging transition metal-nitrogen-carbon (MNC) materials are considered as a promising oxygen reduction reaction (ORR) catalyst system to substitute expensive Pt/C catalysts due to their high surface area and potential high catalytic activity. However, MNC catalysts are easy to be attacked by the ORR byproducts that easily lead to the deactivation of metal active sites. Moreover, a high metal loading affects the mass transfer and stability, but a low loading delivers inferior catalytic activity. Here, a new strategy of designing ZrO2 quantum dots and N-complex as dual chemical ligands in N-doped bubble-like porous carbon nanofibers (N-BPCNFs) to stabilize copper (Cu) by forming CuZrO3-x /ZrO2 heterostructures and CuN ligands with a high loading of 40.5 wt.% is reported. While the highly porous architecture design of N-BPCNFs builds a large solidelectrolytegas phase interface and promotes mass transfer. The preliminary results show that the half-wave potential of the catalyst reaches 0.856 V, and only decreases 0.026 V after 10 000 cycles, exhibiting excellent stability. The proposed strategy of stabilizing metal active sites with both heterostructures and CuN ligands is feasible and scalable for developing high metal loading ORR catalyst.
Collapse
Affiliation(s)
- Yue Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuhui Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chaolong Wei
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Yuehui Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuo Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Liu J, Liao J, Huang K, Dong J, He G, Gong Z, Fei H. A General Strategy to Remove Metal Aggregates toward Metal-Nitrogen-Carbon Catalysts with Exclusive Atomic Dispersion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211398. [PMID: 36691878 DOI: 10.1002/adma.202211398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Metal- and nitrogen-doped nanocarbons (M-N-Cs) are promising alternatives to precious metals for catalyzing electrochemical energy conversion processes. However, M-N-Cs synthesized by high-temperature pyrolysis frequently suffer from compositional heterogeneity with the simultaneous presence of atomically dispersed M-Nx sites and crystalline metal nanoparticles (NPs), which hinders the identification of active sites and rational optimization in performance. Herein, a universal and efficient strategy is reported to obtain both precious- and nonprecious-metal-based M-N-Cs (M = Pt, Fe, Co, Ni, Mn, Cu, Zn) with exclusive atomic dispersion by making use of ammonium iodide as the etchant to remove excessive metal aggregates at high temperature. Taking Pt-N-C as a proof-of-concept demonstration, the complete removal of Pt NPs in Pt-N-C enables clarification on the contributions of the atomic Pt-Nx moieties and Pt NPs to the catalytic activity toward the hydrogen evolution reaction. Combined electrochemical measurements and theoretical calculations identify that the atomic Pt-Nx moieties by themselves possess negligible activity, but they can significantly boost the activity of the Pt NPs via the synergistic effect.
Collapse
Affiliation(s)
- Jianbin Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiangwen Liao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Huang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanchao He
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Honig HC, Elbaz L. Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem 2023. [DOI: 10.1002/celc.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hilah C. Honig
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| | - Lior Elbaz
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| |
Collapse
|
6
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|
7
|
Han Z, Cai W, Zhao S, Zhao Y, Bai J, Chen Q, Wang Y. Iron carbide nanoparticles supported on an N-doped carbon porous framework as a bifunctional material for electrocatalytic oxygen reduction and supercapacitors. NANOSCALE 2022; 14:18157-18166. [PMID: 36449324 DOI: 10.1039/d2nr05620h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Highly active and durable bifunctional materials are of pivotal importance for energy conversion and storage devices, yet a comprehensive understanding of their geometric and electronic influence on electrochemical activity is urgently needed. Fe-N-C materials with physical and chemical structural merits are considered as one of the promising candidates for efficient oxygen reduction reaction electrocatalysts and supercapacitor electrodes. Herein, Fe3C nanoparticles supported on a porous N-doped carbon framework (denoted as Fe3C/PNCF) were readily prepared by one-step chemical vapor deposition under the assistance of a NaCl salt template. The experiment results revealed that the as-synthesized Fe3C/PNCF nanocomposites successfully displayed attractive electrocatalytic oxygen reduction reaction (ORR) activity comparable to that of the Pt/C catalyst (E1/2 of 0.84 V and 0.83 V, respectively), and a superior capacitance of 385.3 F g-1 under 1 A g-1 for a supercapacitor. It's proposed that the increased pyridinic and graphitic N coordination on the hydrophilic porous framework provides more electrochemical active surface area for the storage and transport of electrolyte ions. Additionally, an appropriate d-band center created by the optimized adsorption function endows Fe3C/PNCF with excellent electrochemical properties. The results confirmed that the integration strategy of porous heterogeneous structure and accessible active sites balanced the complex relationship between geometry, electronic structure, and electrochemical activity. Our research provides a facile approach for fabricating multi-functional nanomaterials applicable in both ORR and supercapacitors in the future.
Collapse
Affiliation(s)
- Zengyu Han
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shifeng Zhao
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Zhao
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jirui Bai
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qingyun Chen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunhai Wang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
8
|
Muhyuddin M, Testa D, Lorenzi R, Vanacore GM, Poli F, Soavi F, Specchia S, Giurlani W, Innocenti M, Rosi L, Santoro C. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: Evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
10
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liu Z, Li C, Razavi R. Metals doped carbon nanotubes and carbon nanocages (Co2-CNT(8, 0) and Sc2-C78) as catalysts of ORR in fuel cells. J Mol Graph Model 2022; 115:108212. [DOI: 10.1016/j.jmgm.2022.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
12
|
Cheng YW, Hsieh TH, Huang YC, Tseng PH, Wang YZ, Ho KS, Huang YJ. Calcined Co(II)-Chelated Polyazomethine as Cathode Catalyst of Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2022; 14:polym14091784. [PMID: 35566952 PMCID: PMC9101812 DOI: 10.3390/polym14091784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Polyazomethine (PAM) prepared from the polycondensation between p-phenylene diamine (PDA) and p-terephthalaldehyde (PTAl) via Schiff reaction can physically crosslink (complex) with Co ions. Co-complexed PAM (Co-PAM) in the form of gel is calcined to become a Co, N-co-doped carbonaceous matrix (Co-N-C), acting as cathode catalyst of an anion exchange membrane fuel cell (AEMFC). The obtained Co-N-C catalyst demonstrates a single-atom structure with active Co centers seen under the high-resolution transmission electron microscopy (HRTEM). The Co-N-C catalysts are also characterized by XRD, SEM, TEM, XPS, BET, and Raman spectroscopy. The Co-N-C catalysts demonstrate oxygen reduction reaction (ORR) activity in the KOH(aq) by expressing an onset potential of 1.19–1.37 V vs. RHE, a half wave potential of 0.70–0.92 V, a Tafel slope of 61–89 mV/dec., and number of exchange electrons of 2.48–3.79. Significant ORR peaks appear in the current–voltage (CV) polarization curves for the Co-N-C catalysts that experience two-stage calcination higher than 900 °C, followed by double acid leaching (CoNC-1000A-900A). The reduction current of CoNC-1000A-900A is comparable to that of commercial Pt-implanted carbon (Pt/C), and the max power density of the single cell using CoNC-1000A-900A as cathode catalyst reaches 275 mW cm−2.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Tar-Hwa Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (T.-H.H.); (Y.-C.H.); (Y.-J.H.)
| | - Yu-Chang Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (T.-H.H.); (Y.-C.H.); (Y.-J.H.)
| | - Po-Hao Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Yen-Zen Wang
- Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Road, Dou-Liu City, Yun-Lin 64301, Taiwan
- Correspondence: (Y.-Z.W.); (K.-S.H.)
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (T.-H.H.); (Y.-C.H.); (Y.-J.H.)
- Correspondence: (Y.-Z.W.); (K.-S.H.)
| | - Yue-Jie Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan; (T.-H.H.); (Y.-C.H.); (Y.-J.H.)
| |
Collapse
|
13
|
Muhyuddin M, Filippi J, Zoia L, Bonizzoni S, Lorenzi R, Berretti E, Capozzoli L, Bellini M, Ferrara C, Lavacchi A, Santoro C. Waste Face Surgical Mask Transformation into Crude Oil and Nanostructured Electrocatalysts for Fuel Cells and Electrolyzers. CHEMSUSCHEM 2022; 15:e202102351. [PMID: 34889066 PMCID: PMC9300040 DOI: 10.1002/cssc.202102351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Indexed: 05/05/2023]
Abstract
A novel route for the valorization of waste into valuable products was developed. Surgical masks commonly used for COVID 19 protection by stopping aerosol and droplets have been widely used, and their disposal is critical and often not properly pursued. This work intended to transform surgical masks into platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) as well as into crude oil. Surgical masks were subjected to controlled-temperature and -atmosphere pyrolysis, and the produced char was then converted into electrocatalysts by functionalizing it with metal phthalocyanine of interest. The electrocatalytic performance characterization towards ORR and HER was carried out highlighting promising activity. At different temperatures, condensable oil fractions were acquired and thoroughly analyzed. Transformation of waste surgical masks into electrocatalysts and crude oil can open new routes for the conversion of waste into valuable products within the core of the circular economy.
Collapse
Affiliation(s)
- Mohsin Muhyuddin
- Department of Materials ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Jonathan Filippi
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale Delle Ricerche (CNR)Via Madonna Del Piano 1050019Sesto FiorentinoFirenzeItaly
| | - Luca Zoia
- Department of Earth and Environmental SciencesUniversity of Milano-Bicocca Building U01Piazza della Scienza 120126MilanItaly
| | - Simone Bonizzoni
- Department of Materials ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Roberto Lorenzi
- Department of Materials ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Enrico Berretti
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale Delle Ricerche (CNR)Via Madonna Del Piano 1050019Sesto FiorentinoFirenzeItaly
| | - Laura Capozzoli
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale Delle Ricerche (CNR)Via Madonna Del Piano 1050019Sesto FiorentinoFirenzeItaly
| | - Marco Bellini
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale Delle Ricerche (CNR)Via Madonna Del Piano 1050019Sesto FiorentinoFirenzeItaly
| | - Chiara Ferrara
- Department of Materials ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Alessandro Lavacchi
- Istituto di Chimica Dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale Delle Ricerche (CNR)Via Madonna Del Piano 1050019Sesto FiorentinoFirenzeItaly
| | - Carlo Santoro
- Department of Materials ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| |
Collapse
|
14
|
Chen G, Zhong H, Feng X. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chem Sci 2021; 12:15802-15820. [PMID: 35024105 PMCID: PMC8672718 DOI: 10.1039/d1sc05867c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is the vital process at the cathode of next-generation electrochemical storage and conversion technologies, such as metal-air batteries and fuel cells. Single-metal-atom and nitrogen co-doped carbonaceous electrocatalysts (M-N-C) have emerged as attractive alternatives to noble-metal platinum for catalyzing the kinetically sluggish ORR due to their high electrical conductivity, large surface area, and structural tunability at the atomic level, however, their application is limited by the low intrinsic activity of the metal-nitrogen coordination sites (M-N x ) and inferior site density. In this Perspective, we summarize the recent progress and milestones relating to the active site engineering of single atom carbonous electrocatalysts for enhancing the ORR activity. Particular emphasis is placed on the emerging strategies for regulating the electronic structure of the single metal site and populating the site density. In addition, challenges and perspectives are provided regarding the future development of single atom carbonous electrocatalysts for the ORR and their utilization in practical use.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics Weinberg 2 Halle (Saale) D-06120 Germany
| |
Collapse
|
15
|
Muhyuddin M, Mustarelli P, Santoro C. Recent Advances in Waste Plastic Transformation into Valuable Platinum-Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction. CHEMSUSCHEM 2021; 14:3785-3800. [PMID: 34288512 PMCID: PMC8519148 DOI: 10.1002/cssc.202101252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Plastic waste causes severe environmental hazards, owing to inadequate disposal and limited recycling. Under the framework of circular economy, there are urgent demands to valorize plastic waste more safely and sustainably. Therefore, much scientific interest has been witnessed recently in plastic waste-derived electrocatalysts for the oxygen reduction reaction (ORR), where the plastic waste acts as a cost-effective and easily available precursor for the carbon backbone. The ORR is not only a key efficiency indicator for fuel cells and metal-air batteries but also a major obstacle for their commercial realization. The applicability of the aforementioned electrochemical devices is limited, owing to sluggish ORR activity and expensive platinum-group metal electrocatalysts. However, waste-derived ORR electrocatalysts are emerging as a potential substitute that could be inexpensively fabricated upon the conversion of plastic waste into active materials containing earth-abundant transition metals. In this Minireview, very recent research developments regarding plastic waste-derived ORR electrocatalysts are critically summarized with a prime focus on the followed synthesis routes, physicochemical properties of the derived electrocatalysts, and their ultimate electrochemical performance. Finally, the prospects for the future development of plastic waste-derived electrocatalysts are discussed.
Collapse
Affiliation(s)
- Mohsin Muhyuddin
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Piercarlo Mustarelli
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Carlo Santoro
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| |
Collapse
|