1
|
Naina VR, Gillhuber S, Ritschel C, Jin D, Shubham F, Lebedkin S, Feldmann C, Weigend F, Kappes MM, Roesky PW. Dye induced luminescence properties of gold(I) complexes with near unity quantum efficiency. Angew Chem Int Ed Engl 2024:e202414517. [PMID: 39183175 DOI: 10.1002/anie.202414517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
To study the effect of a dye on the photoluminescence (PL) properties of metal complexes, a series of gold(I) complexes were synthesized, containing a 7-amino-4-methylcoumarin luminophore. The complexes are comprised of a coumarin moiety featuring different ancillary ligands, specifically N-heterocyclic carbenes, triphenylphosphine, and diphenyl-2-pyridylphosphine. The synthesized gold(I) complexes are luminescent both in solution and the solid state at room temperature and 77 K. Complexes of different nuclearity, i.e., mono-, di- and trinuclear compounds were synthesized. A clear trend between the nuclearity and the quantum yields can be seen. The coumarin dye not only improves the PL properties, but also enhances the luminescence of trinuclear clusters, which are otherwise known to be weak emitters in solution. The optical absorption properties were investigated in detail by quantum chemical calculations.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Christian Ritschel
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Da Jin
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Fnm/ Shubham
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| |
Collapse
|
2
|
Shubham, Naina VR, Roesky PW. Luminescent Tetranuclear Copper(I) and Gold(I) Heterobimetallic Complexes: A Phosphine Acetylide Amidinate Orthogonal Ligand Framework for Selective Complexation. Chemistry 2024; 30:e202401696. [PMID: 38758593 DOI: 10.1002/chem.202401696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The synthesis of phosphine acetylide amidinate stabilized copper(I) and gold(I) heterobimetallic complexes was achieved by reacting ligand [{Ph2PC≡CC(NDipp)2}Li(thf)3] (Dipp=2,6-N,N'-diisopropylphenyl) with CuCl and Au(tht))Cl, yielding the eight membered ring [{Ph2PC≡CC(NDipp)2}2Cu2] and the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2]. {Ph2PC≡CC(NDipp)2}2Cu2] features a Cu2 unit, which is bridged by two amidinate ligands, served as a metalloligand to synthesize the heterobimetallic CuI/AuI complexes [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, C6F5). In these reactions, the central ring structure is retained. In contrast, when the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2] was reacted with CuX (X=Cl, Br, I and Mes), the reaction led to the rearrangement of the central ring structure to give [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, Br, I and Mes), which feature the same the eight membered Cu2 ring as above. These compounds were also synthesized by a one-pot reaction. The luminescent heterobimetallic complexes were further investigated for their photophysical properties.
Collapse
Affiliation(s)
- Shubham
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| | - Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| |
Collapse
|
3
|
Osawa M, Soma S, Kobayashi H, Tanaka Y, Hoshino M. Near-white light emission from single crystals of cationic dinuclear gold(I) complexes with bridged diphosphine ligands. Dalton Trans 2023; 52:2956-2965. [PMID: 36648762 DOI: 10.1039/d2dt03785h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cationic dinuclear Au(I) complexes containing acetonitrile (AN) as an ancillary ligand were synthesized: [μ-LMe(AuAN)2]·2BF4 (1), [μ-LEt(AuAN)2]·2BF4 (2), and [μ-LiPr(AuAN)2]·2BF4 (3) (LMe = {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt = {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr = {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene}). The unique structures of complexes 1-3 with two P-Au(I)-AN rods bridged by rigid diphosphine ligands were determined through X-ray analysis. The Au(I)-Au(I) distances observed for complexes 1-3 were as short as 2.9804-3.0457 Å, indicating an aurophilic interaction between two Au(I) atoms. Unlike complexes 2 and 3, complex 1 incorporated CH2Cl2 into the crystals as crystalline solvent molecules. Luminescence studies in the crystalline state revealed that complexes 1 and 2 mainly exhibited bluish-purple phosphorescence (PH) at 293 K: the former had a PH peak wavelength at 415 nm with the photoluminescence quantum yield ΦPL = 0.12, and the latter at 430 nm with ΦPL = 0.13. Meanwhile, complex 3 displayed near-white PH, that is dual PH with two PH bands centered at 425 and 580 nm with ΦPL = 0.44. The PH spectra and lifetimes of complexes 2 and 3 were measured in the temperature range of 77-293 K. The two PH bands observed for complex 3 were suggested to originate from the two emissive excited triplet states, which were in thermal equilibrium. From theoretical calculations, the dual PH observed for complex 3 is explained to occur from the two excited triplet states, T1H and T1L: the former exhibits a high-energy PH band (bluish-purple) and the latter exhibits a low-energy PH band (orange). The T1H state is considered 3ILCT with a structure similar to that of the S0-optimized structure. Conversely, the T1L state is assumed to be a 3MLCT with a T1-optimized structure, which has a short Au(I)-Au(I) bond and two bent rods (Au-AN). The thermal equilibrium between the two excited states is discussed based on computational calculations and photophysical data in the temperature range of 77-293 K. With regard to the crystal of complex 1, we were unable to precisely measure the temperature-dependent emission spectra and lifetimes, particularly at low temperatures, because the cooled crystals became irreversibly turbid over time.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Sakie Soma
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Hiroyuki Kobayashi
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
4
|
Uhlmann C, Feuerstein TJ, Gamer MT, Roesky PW. Coinage Metal Bis(amidinate) Complexes as Building Blocks for Self-Assembled One-Dimensional Coordination Polymers. Chemistry 2023; 29:e202300289. [PMID: 36762591 DOI: 10.1002/chem.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The pyridyl functionalized amidinate [{PyC≡CC(NDipp)2 }Li(thf)2 ]n was used to synthesize a series of bis-amidinate complexes [{PyC≡CC(NDipp)2 }2 M2 ] (M=Cu, Ag, Au) with fully supported metallophilic interactions. These metalloligands were then used as building blocks for the synthesis of one-dimensional heterobimetallic coordination polymers using Zn(hfac)2 (hfac=hexaflouroacetylacetonate) for self-assembly. Interestingly, the three coordination polymers [{PyC≡CC(NDipp)2 }2 M2 ][Zn(hfac)2 ] (M=Cu, Ag, Au), exhibit a zig zag shape in the solid state. To achieve linear coordination geometry other connectors such as M'(acac) (M'=Ni, Co) (acac=acetylacetonate) were investigated. The thus obtained compounds [{PyC≡CC(NDipp)2 }2 Cu2 ][M'(acac)2 ] (M'=Ni, Co) are indeed linear heterobimetallic coordination polymers featuring a metalloligand backbone with fully supported metallophilic interactions.
Collapse
Affiliation(s)
- Cedric Uhlmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Thomas J Feuerstein
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Uhlmann C, Feuerstein TJ, Seifert TP, Jung AP, Gamer MT, Köppe R, Lebedkin S, Kappes MM, Roesky PW. Luminescent early-late-hetero-tetranuclear group IV - Au(I) bisamidinate complexes. Dalton Trans 2022; 51:10357-10360. [PMID: 35776128 DOI: 10.1039/d2dt00458e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The versatile metalloligand [{HCCC(NDipp)2}2Au2] (dipp = 2,6-diisopropylphenyl) was converted into early-late heterotetrametallic complexes [{ClCp2MCCC(NDipp)2}2Au2] (M = Ti, Zr). These compounds show photoluminescence with either remarkably different (Ti) or similar (Zr) features as compared to related solely coinage metal containing acetylide amidinate complexes.
Collapse
Affiliation(s)
- Cedric Uhlmann
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Thomas J Feuerstein
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Tim P Seifert
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - André P Jung
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Michael T Gamer
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Ralf Köppe
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
6
|
Krätschmer F, Gui X, Gamer MT, Klopper W, Roesky PW. Systematic investigation of the influence of electronic substituents on dinuclear gold(I) amidinates: synthesis, characterisation and photoluminescence studies. Dalton Trans 2022; 51:5471-5479. [PMID: 35266476 DOI: 10.1039/d1dt03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinuclear gold(I) compounds are of great interest due to their aurophilic interactions that influence their photophysical properties. Herein, we showcase that gold-gold interactions can be influenced by tuning the electronic properties of the ligands. Therefore, various para substituted (R) N,N'-bis(2,6-dimethylphenyl)formamidinate ligands (pRXylForm; Xyl = 2,6-dimethylphenyl and Form = formamidinate) were treated with Au(tht)Cl (tht = tetrahydrothiophene) to give via salt metathesis the corresponding gold(I) compounds [pRXylForm2Au2] (R = -OMe, -Me, -Ph, -H, -SMe, and -CO2Me). All complexes showed intense luminescence properties at low temperatures. Alignment with the Hammett parameter σp revealed the trends in the 1H and 13C NMR spectra. These results showed the influence of the donor-acceptor abilities of different substituents on the ligand system which were confirmed with calculated orbital energies. Photophysical investigations showed their lifetimes in the millisecond range indicating phosphorescence processes and revealed a redshift with the decreasing donor ability of the substituents in the solid state.
Collapse
Affiliation(s)
- Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
7
|
Dahlen M, Vázquez Quesada J, Santos Correa L, Münzfeld L, Reinfandt N, Klopper W, Roesky PW. Investigation of the Coordination Chemistry of a Bisamidinate Ferrocene Ligand with Cu, Ag, and Au. ACS OMEGA 2022; 7:4683-4693. [PMID: 35155960 PMCID: PMC8829862 DOI: 10.1021/acsomega.1c07036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The coordination chemistry of a ferrocene ligand with one bulky amidinate function attached to each ring toward two different coinage metal precursors was investigated. In dependence of the metal and the co-ligands, "ansa" type structures and non-bridged structures were obtained. Six different compounds are reported. In the "ansa" type structures, short Fe-M (M = Cu, Ag) distances were observed in the molecular structures in the solid state. However, theoretical calculations (DFT) did not reveal a stabilizing metal-metal interaction. Instead, dispersion interactions within the ligand and between the ligand and metal seem to represent the main stabilization forces.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Juana Vázquez Quesada
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Luis Santos Correa
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Luca Münzfeld
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Niklas Reinfandt
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Peter W. Roesky
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Scattolin T, Lippmann P, Beliš M, Van Hecke K, Ottb I, Nolan SP. A simple synthetic entryway into (N‐heterocyclic carbene)gold‐steroidyl complexes and their anticancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Ingo Ottb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| |
Collapse
|
9
|
Dahlen M, Seifert TP, Lebedkin S, Gamer MT, Kappes MM, Roesky PW. Tetra- and hexanuclear string complexes of the coinage metals. Chem Commun (Camb) 2021; 57:13146-13149. [PMID: 34807965 DOI: 10.1039/d1cc06034a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the PNNP ligand system N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate (dpfam) featuring different coordination compartments with [AuCl(tht)], [CuMes]5, [AgMes]4, or [AuC6F5(tht)] (tht = tetrahydrothiophene) resulted in tetranuclear homo- and heterometallic coinage metal complexes, as well as a hexanuclear gold complex. All of them feature a metal string conformation. Photophysical investigation revealed a significant dependence of the photoluminescence properties on the metal composition. Below 100 K, the PL efficiency of three compounds approaches nearly 100%.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Tim P Seifert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Manfred M Kappes
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| |
Collapse
|
10
|
Kovalski E, Schaarschmidt D, Hildebrandt A. Anthracene‐Containing Gold(I) Triphenylphosphine Acetylide: Synthesis and (Spectro)electrochemical Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eduard Kovalski
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry, Inorganic Chemistry, D- 09107 Chemnitz Germany
| | - Dieter Schaarschmidt
- Department of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Alexander Hildebrandt
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry, Inorganic Chemistry, D- 09107 Chemnitz Germany
- Technische Universität Dresden Carl Gustav Carus Faculty of Medicine Department of Anesthesiology and Intensive Care Medicine Clinical Sensoring and Monitoring Fetscherstr. 74 D-01307 Dresden Germany
| |
Collapse
|
11
|
Zovko C, Schoo C, Feuerstein TJ, Münzfeld L, Knöfel ND, Lebedkin S, Kappes MM, Roesky PW. Alkali Metal Complexes of a Bis(diphenylphosphino)methane Functionalized Amidinate Ligand: Synthesis and Luminescence. Chemistry 2021; 27:15119-15126. [PMID: 34427374 PMCID: PMC8596514 DOI: 10.1002/chem.202102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/22/2022]
Abstract
A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM-C(N-Dipp)2 H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM-C(N-Dipp)2 }(Ln )] (M=Li, Na, K, Rb, Cs; L=thf, Et2 O). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes.
Collapse
Affiliation(s)
- Christina Zovko
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Christoph Schoo
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Thomas J. Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Luca Münzfeld
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Nicolai D. Knöfel
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Sergei Lebedkin
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Manfred M. Kappes
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg. 276131KarlsruheGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|
12
|
Zhao Y, Ma X, Yan B, Ni C, He X, Peng Y, Yang Z. A novel case of atom-efficient C-C bond formation of small molecules catalyzed by the facile organoaluminum compound. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
14
|
Feuerstein TJ, Seifert TP, Jung AP, Müller R, Lebedkin S, Kappes MM, Roesky PW. Efficient Blue Phosphorescence in Gold(I)-Acetylide Functionalized Coinage Metal Bis(amidinate) Complexes. Chemistry 2020; 26:16676-16682. [PMID: 32520425 PMCID: PMC7756867 DOI: 10.1002/chem.202002466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/27/2023]
Abstract
The synthesis of linear symmetric ethynyl- and acetylide-amidinates of the coinage metals is presented. Starting with the desilylation of the complexes [{Me3 SiC≡CC(NDipp)2 }2 M2 ] (Dipp=2,6-diisopropylphenyl) (M=Cu, Au) it is demonstrated that this compound class is suitable to serve as a versatile metalloligand. Deprotonation with n-butyllithium and subsequent salt metathesis reactions yield symmetric tetranuclear gold(I) acetylide complexes of the form [{(PPh3 )AuC≡CC(NDipp)2 }2 M2 ] (M=Cu, Au). The corresponding Ag complex [{(PPh3 )AuC≡CC(NDipp)2 }2 Ag2 ] was obtained by a different route via metal rearrangement. All compounds show bright blue or blue-green microsecond long phosphorescence in the solid state, hence their photophysical properties were thoroughly investigated in a temperature range of 20-295 K. Emission quantum yields of up to 41 % at room temperature were determined. Furthermore, similar emissions with quantum yields of 15 % were observed for the two most brightly luminescent complexes in thf solution.
Collapse
Affiliation(s)
- Thomas J. Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Tim P. Seifert
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - André P. Jung
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Rouven Müller
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Sergei Lebedkin
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Manfred M. Kappes
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber Weg 276131KarlsruheGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| |
Collapse
|