1
|
Cao J, Chen X, Ma X, Zhang T, Sun W. Theoretical study on the photophysical properties of thiophene-fused-type BODIPY series molecules in fluorescence imaging and photodynamic therapy. Phys Chem Chem Phys 2024; 26:21520-21529. [PMID: 39082090 DOI: 10.1039/d4cp01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
As a class of photosensitizers (PSs) with dual functions of photodynamic therapy (PDT) and fluorescence imaging, the relationship between the structure and dual-function of thiophene-fused-type BODIPY dyes has not been studied in depth before. We found that the thiophene-fused-type BODIPY triplet photosensitizer is produced according to the energy level matching rule and the introduction of the thiophene ring significantly reduces the energy gap ΔEST between singlet and triplet states, as revealed by our investigation of the excited state structures and energies of thieno-fused BODIPY dyes. At the same time, a tiny ΔEST also results in a greatly enhanced intersystem crossing (ISC) rate, kISC. The kISC value of MeO-BODIPY, having the highest singlet oxygen quantum yield (ΦΔ), is the largest. Substitution with a strong electron donor N,N-dimethylaminophenyl (DMA) leads to the vertical configuration in the T1 state. The small ΔE (0.0029 eV) between the HOMO and HOMO-1 triggers the photo induced electron transfer (PET) of inhibiting ISC and fluorescence. When thieno-fused BODIPYs react with pyrrole, the increase of π-conjugation and smaller ΔEHOMO-LUMO explain the redshift in emission wavelength of thieno-pyrrole-fused BODIPY. The more planar configuration of the S1 state and the stronger oscillator intensity reflect a higher fluorescence quantum yield (ΦF). The extension of π-conjugation can cause molecules to transition to higher-level singlet excited states (Sn states, n ≥ 1) after absorbing energy and reduce the energy level of the excited state, resulting in multiple channels and favoring 1O2 production for thieno-pyrrole-fused BODIPYs with electron-withdrawing groups at the para-position of the phenyl groups. Due to ΔES0-T1 < 0.980 eV, the substitution of electron-donating groups cannot produce 1O2. In this work, we have revealed the mechanism of ISC and the fluorescence emission process in the thiophene-fused-type BODIPY dye, which has provided a theoretical foundation and guidance for the future design of BODIPY-based heavy-atom-free PSs for molecular applications in PDT.
Collapse
Affiliation(s)
- Jianfang Cao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Xinyu Chen
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Xue Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Tianci Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, 116024, China.
| |
Collapse
|
2
|
Can Karanlık C, Karanlık G, Erdoğmuş A. Water-Soluble Meso-Thienyl BODIPY Therapeutics: Synthesis, Characterization, Exploring Photophysicochemical and DNA/BSA Binding Properties. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
4
|
Buglak AA, Charisiadis A, Sheehan A, Kingsbury CJ, Senge MO, Filatov MA. Quantitative Structure-Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavy-Atom-Free BODIPY Photosensitizers*. Chemistry 2021; 27:9934-9947. [PMID: 33876842 PMCID: PMC8362084 DOI: 10.1002/chem.202100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/30/2022]
Abstract
Heavy-atom-free sensitizers forming long-living triplet excited states via the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process have recently attracted attention due to their potential to replace costly transition metal complexes in photonic applications. The efficiency of SOCT-ISC in BODIPY donor-acceptor dyads, so far the most thoroughly investigated class of such sensitizers, can be finely tuned by structural modification. However, predicting the triplet state yields and reactive oxygen species (ROS) generation quantum yields for such compounds in a particular solvent is still very challenging due to a lack of established quantitative structure-property relationship (QSPR) models. In this work, the available data on singlet oxygen generation quantum yields (ΦΔ ) for a dataset containing >70 heavy-atom-free BODIPY in three different solvents (toluene, acetonitrile, and tetrahydrofuran) were analyzed. In order to build reliable QSPR model, a series of new BODIPYs were synthesized that bear different electron donating aryl groups in the meso position, their optical and structural properties were studied along with the solvent dependence of singlet oxygen generation, which confirmed the formation of triplet states via the SOCT-ISC mechanism. For the combined dataset of BODIPY structures, a total of more than 5000 quantum-chemical descriptors was calculated including quantum-chemical descriptors using density functional theory (DFT), namely M06-2X functional. QSPR models predicting ΦΔ values were developed using multiple linear regression (MLR), which perform significantly better than other machine learning methods and show sufficient statistical parameters (R=0.88-0.91 and q2 =0.62-0.69) for all three solvents. A small root mean squared error of 8.2 % was obtained for ΦΔ values predicted using MLR model in toluene. As a result, we proved that QSPR and machine learning techniques can be useful for predicting ΦΔ values in different media and virtual screening of new heavy-atom-free BODIPYs with improved photosensitizing ability.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of PhysicsSaint-Petersburg State UniversityUniversiteteskaya Emb. 7–9199034St. PetersburgRussia
| | - Asterios Charisiadis
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Aimee Sheehan
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| | - Christopher J. Kingsbury
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenberg-Str. 2a85748GarchingGermany
| | - Mikhail A. Filatov
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| |
Collapse
|
5
|
Deckers J, Cardeynaels T, Lutsen L, Champagne B, Maes W. Heavy-Atom-Free Bay-Substituted Perylene Diimide Donor-Acceptor Photosensitizers. Chemphyschem 2021; 22:1488-1496. [PMID: 34031956 DOI: 10.1002/cphc.202100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Perylene diimide (PDI) dyes are extensively investigated because of their favorable photophysical characteristics for a wide range of organic material applications. Fine-tuning of the optoelectronic properties is readily achieved by functionalization of the electron-deficient PDI scaffold. Here, we present four new donor-acceptor type dyads, wherein the electron donor units - benzo[1,2-b : 4,5-b']dithiophene, 9,9-dimethyl-9,10-dihydroacridine, dithieno[3,2-b : 2',3'-d]pyrrole, and triphenylamine-are attached to the bay-positions of the PDI acceptor. Intersystem crossing occurs for these systems upon photoexcitation, without the aid of heavy atoms, resulting in singlet oxygen quantum yields up to 80 % in toluene solution. Furthermore, this feature is retained when the system is directly irradiated with energy corresponding to the intramolecular charge-transfer absorption band (at 639 nm). Geometrical optimization and (time-dependent) density functional theory calculations afford more insights into the requirements for intersystem crossing such as spin-orbit coupling, dihedral angles, the involvement of charge-transfer states, and energy level alignment.
Collapse
Affiliation(s)
- Jasper Deckers
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Tom Cardeynaels
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.,UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Laurence Lutsen
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Benoît Champagne
- UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Wouter Maes
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| |
Collapse
|
6
|
Dong Y, Taddei M, Doria S, Bussotti L, Zhao J, Mazzone G, Di Donato M. Torsion-Induced Nonradiative Relaxation of the Singlet Excited State of meso-Thienyl Bodipy and Charge Separation, Charge Recombination-Induced Intersystem Crossing in Its Compact Electron Donor/Acceptor Dyads. J Phys Chem B 2021; 125:4779-4793. [PMID: 33929843 DOI: 10.1021/acs.jpcb.1c00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We prepared a series of meso-thienyl boron-dipyrromethene (Bodipy) derivatives to investigate the spin-orbit charge transfer intersystem crossing (SOCT-ISC). The photophysical properties of the compounds were studied by steady-state and femtosecond/nanosecond transient absorption spectroscopy, as well as density functional theory (DFT) computations. Different from the meso-phenyl Bodipy analogues, the meso-thienyl Bodipy are weakly fluorescent. Based on femtosecond transient absorption and DFT computations, we propose that the torsion of the thienyl group and the distortion of the Bodipy core (19.7 ps) in the S1 state lead to a conical intersection on the potential energy surface as an efficient nonradiative decay channel (408 ps), which is responsible for the observed weak fluorescence as compared to the meso-phenyl analogue. The increased fluorescence quantum yield (from 5.5 to 14.5%) in viscous solvents supports this hypothesis. With the electron donor 4'-hydroxylphenyl moiety attached to the meso-thienyl unit, the fast charge separation (CS, 15.3 ps) and charge recombination (CR, 238 ps) processes outcompete the torsion-induced nonradiative decay and induce fast ISC through the SOCT-ISC mechanism. The triplet quantum yield of the electron donor/acceptor dyad is highly dependent on solvent polarity (ΦT = 1.9-45%), which supports the SOCT-ISC mechanism, and the triplet-state lifetime is up to 247.3 μs. Using the electron donor-acceptor dyad showing SOCT-ISC as a triplet photosensitizer, efficient triplet-triplet annihilation (TTA) upconversion was observed with a quantum yield of up to 6.0%.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|