1
|
Zhou G, Cheng X, Yang J, Zhu Y, Li H. Computational and experimental studies on the micellar morphology and emission mechanisms of AIE and H-bonding fluorescent composites. RSC Adv 2023; 13:4612-4622. [PMID: 36760310 PMCID: PMC9900601 DOI: 10.1039/d2ra07900c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
In this work, we use density functional theory (DFT) calculated competitive hydrogen bonds and dissipative particle dynamics (DPD) simulated micellar structural information to uncover the CO2-expanded liquid (CXL)-aided self-assembled structure and emission mechanisms of the self-assembled fluorescent composites (SAFCs). Herein, the SAFCs are formed through the self assembly between diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) blend and the dye molecule 4-(9-(2-(4-hydroxyphenyl)ethynyl)-7,10-diphenylfluoranthen-8-yl)phenol (4) in CO2-expanded toluene at 313.2 K and varied pressures. Firstly, from DPD simulation, we have demonstrated that the addition of CO2 to toluene favors both the expansion of the solvophobic P4VP phase and contraction of solvophilic PS chains, which facilitates the continuous morphological transitions of SAFCs from spherical micelles (3.0 MPa) through wormlike plus spherical micelles (4.0-4.8 MPa) to large vesicles (6.0-6.5 MPa) with pressure rise. Secondly, the DFT calculated bonding energies and IR spectra of the competitive hydrogen bonds help us to clarify the major type of hydrogen bonds determining the fluorescence (FL) performance of the SAFCs. Furthermore, we have revealed the SAFC emission mechanism via the pressure-tunable changes in the aggregation degrees and amount of hydrogen bonds involving 4 and P4VP chains. This work provides a good understanding for the morphology-property control of the self-assembled polymer composites in both microscopic and mesoscopic scales.
Collapse
Affiliation(s)
- Guangying Zhou
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Yanyan Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Hongping Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
2
|
Lin X, Huang X, Tian X, Yuan Z, Lu J, Nie X, Wang P, Lei H, Wang P. Natural Small-Molecule-Based Carrier-Free Self-Assembly Library Originated from Traditional Chinese Herbal Medicine. ACS OMEGA 2022; 7:43510-43521. [PMID: 36506183 PMCID: PMC9730315 DOI: 10.1021/acsomega.2c04098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The carrier-free self-assembly of small molecules opens a new window for the development of nanomaterials. This study is dedicated to developing binary small-molecular self-assemblies derived from phytochemicals in traditional Chinese herbal medicine. Among them, Rhei Radix et Rhizoma and Coptidis Rhizoma are a common pair used in clinics for thousands of years. Here, we found that there were numerous spherical supramolecular nanoparticles (NPs) originated from Rhei Radix et Rhizoma and Coptidis Rhizoma decoction. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was used to analyze the composition of the supramolecules, and a total of 119 phytochemicals were identified (23 anthraquinones, 31 alkaloids, 24 organic acids, 8 tannins, and other components). Isothermal titration calorimetry (ITC) showed that the interaction between Rhei Radix et Rhizoma and Coptidis Rhizoma was a spontaneous exothermic reaction, indicating that their phytochemicals had the property of self-assembly and interacted to form supramolecules in the decocting process. Furthermore, scanning electron microscopy (SEM), UV, IR, NMR, and ITC were used to verify that rhein and coptisine could self-assemble into nanofibers (Rhe-Cop NFs), while emodin and coptisine could self-assemble into nanoparticles (Emo-Cop NPs). The formation mechanism analysis of the self-assemblies revealed that they were induced by electrostatic attraction, hydrogen bonding, and π-π stacking, forming nanospheres of about 50 nm and nanofibers. The current study not only provides an idea of discovering carrier-free self-assemblies from traditional herbal medicine decoction but also supplies a reference for the design of binary self-assembly of small molecules in the future.
Collapse
|
3
|
Huang X, Chen L, Jin J, Kim H, Chen L, Zhang Z, Yu L, Li S, Stang PJ. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorg Chem 2022; 61:20237-20242. [DOI: 10.1021/acs.inorgchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Xuechun Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Luyi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianan Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Luyao Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
5
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|
6
|
Zheng J, Suwardi A, Wong CJE, Loh XJ, Li Z. Halogen bonding regulated functional nanomaterials. NANOSCALE ADVANCES 2021; 3:6342-6357. [PMID: 36133496 PMCID: PMC9419782 DOI: 10.1039/d1na00485a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/22/2021] [Indexed: 06/16/2023]
Abstract
Non-covalent interactions have gained increasing attention for use as a driving force to fabricate various supramolecular architectures, exhibiting great potential in crystal and materials engineering and supramolecular chemistry. As one of the most powerful non-covalent bonds, the halogen bond has recently received increasing attention in functional nanomaterial design. The present review describes the latest studies based on halogen bonding induced self-assembly and its applications. Due to the high directionality and controllable interaction strength, halogen bonding can provide a facile platform for the design and synthesis of a myriad of nanomaterials. In addition, both the fundamental aspects and the real engineering applications are discussed, which encompass molecular recognition and sensing, organocatalysis, and controllable multifunctional materials and surfaces.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Claris Jie Ee Wong
- Department of Material Science and Engineering, National University of Singapore S117576 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|
7
|
Encapsulation of positive ion [Ni(Im)6]2+ in a cage structure based on imidazole sulfate supramolecules self-assemble: Preparation, structure, hirshfeld surface analysis and electrochemical study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
García-González MC, Espinosa-Rocha J, Rodríguez-Cortés LA, Amador-Sánchez YA, Miranda LD, Rodríguez-Molina B. Pairing multicomponent stators with aromatic rotators for new emissive molecular rotors. Org Biomol Chem 2021; 19:3404-3412. [PMID: 33899881 DOI: 10.1039/d1ob00161b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We demonstrate here that the Ugi-Sonogashira protocol can be successfully used to obtain five new molecular rotors 10a-e with strong emission. They have been synthesized by combining multicomponent Ugi stators and several aromatic rotary components: phenylene, p-xylene, naphthalene and anthracene. The synthesized conjugated rotors are highly fluorescent (Φf = 0.39 to Φf = 0.10), and changes in their emission were observed upon variations of the surrounding media. Particularly, we found that they are sensitive to aggregation (THF/water) or high viscosity (methanol/glycerol) conditions. This work paves the way to develop new emissive rotors with exciting photophysical properties.
Collapse
Affiliation(s)
- Ma Carmen García-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Jorge Espinosa-Rocha
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Lizbeth A Rodríguez-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Yoarhy A Amador-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| |
Collapse
|
9
|
Biswas PK, Goswami A, Saha S, Schmittel M. Dynamics of Hydrogen Bonding in Three-Component Nanorotors. Chemistry 2020; 26:14095-14099. [PMID: 32744381 PMCID: PMC7702118 DOI: 10.1002/chem.202002877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Indexed: 11/23/2022]
Abstract
The dynamics of hydrogen bonding do not only play an important role in many biochemical processes but also in Nature's multicomponent machines. Here, a three-component nanorotor is presented where both the self-assembly and rotational dynamics are guided by hydrogen bonding. In the rate-limiting step of the rotational exchange, two phenolic O-H-N,N(phenanthroline) hydrogen bonds are cleaved, a process that was followed by variable-temperature 1 H NMR spectroscopy. Activation data (ΔG≠ 298 =46.7 kJ mol-1 at 298 K, ΔH≠ =55.3 kJ mol-1 , and ΔS≠ =28.8 J mol-1 K-1 ) were determined, furnishing a rotational exchange frequency of k298 =40.0 kHz. Fully reversible disassembly/assembly of the nanorotor was achieved by addition of 5.0 equivalents of trifluoroacetic acid (TFA)/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) over three cycles.
Collapse
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|