1
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
2
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
3
|
Ghosh D, Molla SA, Ghosh NN, Khamarui S, Maiti DK. Cu II-Catalyzed cis-Selective Synthesis of Ketoepoxides from Phenacyl Bromides and Water. J Org Chem 2023. [PMID: 37379249 DOI: 10.1021/acs.joc.2c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A verity of α,β-ketoepoxides was synthesized using a CuII-catalyzed oxidative C-C/O-C coupled cyclization strategy with high yield and cis-selectivity. Water is used as the source of oxygen and phenacyl bromide as the carbon in the valuable epoxides. The self-coupling method was extended to cross-coupling between phenacyl bromides with benzyl bromides. A high cis-diastereoselectivity was observed in all the synthesized ketoepoxides. Control experiments and density functional theory (DFT) study were performed to understand the CuII-CuI transition mechanism.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | | | - Saikat Khamarui
- Department of Chemistry, Government General Degree College, Kalna-1, Burdwan 713405, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Islam K, Bhunia BK, Mandal G, Nag B, Jaiswal C, Mandal BB, Kumar A. Room-Temperature, Copper-Free, and Amine-Free Sonogashira Reaction in a Green Solvent: Synthesis of Tetraalkynylated Anthracenes and In Vitro Assessment of Their Cytotoxic Potentials. ACS OMEGA 2023; 8:16907-16926. [PMID: 37214732 PMCID: PMC10193572 DOI: 10.1021/acsomega.3c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of Cs2CO3 has been accomplished using a combination of Pd(CH3CN)2Cl2 (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields. The rate-determining step is likely to involve the oxidative addition of Ar-X. The green protocol provides access to various valuable polycyclic aromatic hydrocarbons (PAHs) with exciting photophysical properties. Among them, six tetraalkynylated anthracenes have been tested for their anticancer properties on the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and human dermal fibroblasts (HDFs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to find out the IC50 concentration and lethal dose. The compounds being intrinsically fluorescent, their cellular localization was checked by live cell fluorescence imaging. 4',6-Diamidino-2-phenylindole (DAPI) and propidium iodide (PI) staining was performed to check apoptosis and necrosis, respectively. All of these studies have shown that anthracene and its derivatives can induce cell death via DNA damage and apoptosis.
Collapse
Affiliation(s)
- Khadimul Islam
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Bibhas K. Bhunia
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gargi Mandal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Bedabara Nag
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti
and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti
and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Lokolkar MS, Kolekar YA, Jagtap PA, Bhanage BM. Cu-Catalyzed C-C Coupling Reactions. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Kang QQ, Wang ZY, Hu SJ, Luo CM, Cai XE, Sun YB, Li T, Wei WT. Copper-catalyzed switchable cyclization of alkyne-tethered α-bromocarbonyls: selective access to quinolin-2-ones and quinoline-2,4-diones. Org Chem Front 2022. [DOI: 10.1039/d2qo01240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper-catalyzed cyclization of alkynes has played a significant role in modern catalytic chemistry.
Collapse
Affiliation(s)
- Qing-Qing Kang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
7
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst‐Free, Base‐Promoted 1,2‐Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Tamil Nadu 603203 India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials College of Chemistry Chongqing Normal University Chongqing 401331 China
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4L 1G8 Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
9
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst-Free, Base-Promoted 1,2-Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021; 60:16529-16538. [PMID: 33901332 PMCID: PMC8362073 DOI: 10.1002/anie.202103686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K+ in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and TechnologySRM NagarKattankulathurTamil Nadu603203India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNBE4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Schorr F, Fantuzzi F, Dewhurst RD, Braunschweig H. Dialkynyldiboranes(4) and the selectable reactivity of their C-H, C[triple bond, length as m-dash]C and B-B bonds. Chem Commun (Camb) 2021; 57:2645-2648. [PMID: 33587741 DOI: 10.1039/d1cc00265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis and reactivity of dialkynyldiboranes(4), a little-studied family of diboranes, are presented herein. Three dialkynyldiboranes(4) were prepared via two different salt metathesis pathways. The three reactive sites of these dialkynyldiboranes(4) are then selectively addressed by judicious application of reagents: addition of an amine N-oxide leads to oxygen insertion into the B-B bond, dicobaltoctacarbonyl binds to the alkynyl C[triple bond, length as m-dash]C bonds, while Sonogashira-Hagihara cross-coupling conditions lead to double C-C bond formation at the alkynyl C-H groups.
Collapse
Affiliation(s)
- Fabian Schorr
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany and Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, Würzburg 97074, Germany
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
11
|
Budiman YP, Lorenzen S, Liu Z, Radius U, Marder TB. Base-Free Pd-Catalyzed C-Cl Borylation of Fluorinated Aryl Chlorides. Chemistry 2021; 27:3869-3874. [PMID: 33197081 PMCID: PMC7986610 DOI: 10.1002/chem.202004648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Indexed: 01/21/2023]
Abstract
Catalytic C-X borylation of aryl halides containing two ortho-fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho-fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents. This method, conducted under base-free conditions, is compatible with the resulting di-ortho-fluorinated aryl boronate products which are sensitive to base.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Sabine Lorenzen
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Zhiqiang Liu
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Föhrenbacher SA, Krahfuss MJ, Zapf L, Friedrich A, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane: A Versatile Fluoride Acceptor for Transition Metal Chemistry. Chemistry 2021; 27:3504-3516. [PMID: 33241855 PMCID: PMC7898530 DOI: 10.1002/chem.202004885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Fluoride abstraction from different types of transition metal fluoride complexes [Ln MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C2 F5 )3 PF2 to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2 F5 )3 PF3 ]- ) is reported. (C2 F5 )3 PF2 reacted with trans-[Ni(iPr2 Im)2 (ArF )F] (iPr2 Im=1,3-diisopropylimidazolin-2-ylidene; ArF =C6 F5 , 1 a; 4-CF3 -C6 F4 , 1 b; 4-C6 F5 -C6 F4 , 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr2 Im)2 (solv)(ArF )]FAP (2 a-c[solv]; solv=Et2 O, CH2 Cl2 , THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh3 , solvent coordination was suppressed and the complexes trans-[Ni(iPr2 Im)2 (PPh3 )(C6 F5 )]FAP (trans-2 a[PPh3 ]) and cis-[Ni(iPr2 Im)2 (Dipp2 Im)(C6 F5 )]FAP (cis-2 a[Dipp2 Im]) (Dipp2 Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp2 Im)CuF] (3) in CH2 Cl2 or 1,2-difluorobenzene led to the isolation of [{(Dipp2 Im)Cu}2 ]2+ 2 FAP- (4). Subsequent reaction of 4 with PPh3 and different carbenes resulted in the complexes [(Dipp2 Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6 Me6 , fluoride transfer afforded [(Dipp2 Im)Cu(C6 Me6 )]FAP (5 f), which serves as a source of [(Dipp2 Im)Cu)]+ . Fluoride abstraction of [Cp2 TiF2 ] (7) resulted in the formation of dinuclear [FCp2 Ti(μ-F)TiCp2 F]FAP (8) (Cp=η5 -C5 H5 ) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.
Collapse
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mirjam J. Krahfuss
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ludwig Zapf
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- ConsultantMerck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Maik Finze
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
13
|
Budiman YP, Westcott SA, Radius U, Marder TB. Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yudha P. Budiman
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4 L 1G8 Canada
| | - Udo Radius
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
14
|
Ertler D, Kuntze-Fechner MW, Dürr S, Lubitz K, Radius U. C–F bond activation of perfluorinated arenes using NHC-stabilized cobalt half-sandwich complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj06137a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A study on the reactivity of cobalt half-sandwich complexes [Cp(*)Co(NHC)(olefin)] with perfluoroarenes demonstrates that C–F activation occurs along a one-electron oxidative addition pathway.
Collapse
Affiliation(s)
- Daniel Ertler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Maximilian W. Kuntze-Fechner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Simon Dürr
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Katharina Lubitz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
15
|
Liu Z, Budiman YP, Tian Y, Friedrich A, Huang M, Westcott SA, Radius U, Marder TB. Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes. Chemistry 2020; 26:17267-17274. [PMID: 32697365 PMCID: PMC7821263 DOI: 10.1002/chem.202002888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 01/13/2023]
Abstract
We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mingming Huang
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
16
|
Kuntze-Fechner MW, Verplancke H, Tendera L, Diefenbach M, Krummenacher I, Braunschweig H, Marder TB, Holthausen MC, Radius U. Coligand role in the NHC nickel catalyzed C-F bond activation: investigations on the insertion of bis(NHC) nickel into the C-F bond of hexafluorobenzene. Chem Sci 2020; 11:11009-11023. [PMID: 34094350 PMCID: PMC8162383 DOI: 10.1039/d0sc04237d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The reaction of [Ni(Mes2Im)2] (1) (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) with polyfluorinated arenes as well as mechanistic investigations concerning the insertion of 1 and [Ni(iPr2Im)2] (1ipr) (iPr2Im = 1,3-diisopropyl-imidazolin-2-ylidene) into the C–F bond of C6F6 is reported. The reaction of 1 with different fluoroaromatics leads to formation of the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = 4-CF3-C6F42, C6F53, 2,3,5,6-C6F4N 4, 2,3,5,6-C6F4H 5, 2,3,5-C6F3H26, 3,5-C6F2H37) in fair to good yields with the exception of the formation of the pentafluorophenyl complex 3 (less than 20%). Radical species and other diamagnetic side products were detected for the reaction of 1 with C6F6, in line with a radical pathway for the C–F bond activation step using 1. The difluoride complex trans-[Ni(Mes2Im)2(F)2] (9), the bis(aryl) complex trans-[Ni(Mes2Im)2(C6F5)2] (15), the structurally characterized nickel(i) complex trans-[NiI(Mes2Im)2(C6F5)] (11) and the metal radical trans-[NiI(Mes2Im)2(F)] (12) were identified. Complex 11, and related [NiI(Mes2Im)2(2,3,5,6-C6F4H)] (13) and [NiI(Mes2Im)2(2,3,5-C6F3H2)] (14), were synthesized independently by reaction of trans-[Ni(Mes2Im)2(F)(ArF)] with PhSiH3. Simple electron transfer from 1 to C6F6 was excluded, as the redox potentials of the reaction partners do not match and [Ni(Mes2Im)2]+, which was prepared independently, was not detected. DFT calculations were performed on the insertion of [Ni(iPr2Im)2] (1ipr) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6. For 1ipr, concerted and NHC-assisted pathways were identified as having the lowest kinetic barriers, whereas for 1, a radical mechanism with fluoride abstraction and an NHC-assisted pathway are both associated with almost the same kinetic barrier. A combined experimental and theoretical study on the mechanism of the C–F bond activation of C6F6 with [Ni(NHC)2] is provided.![]()
Collapse
Affiliation(s)
- Maximilian W Kuntze-Fechner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Hendrik Verplancke
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Martin Diefenbach
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Max C Holthausen
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|