1
|
Aloke C, Onisuru OO, Achilonu I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem Biophys Res Commun 2024; 734:150774. [PMID: 39366175 DOI: 10.1016/j.bbrc.2024.150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
2
|
Yang J, King RP. Diversification of Bipyridines and Azaheterocycles via Nucleophilic Displacement of Trimethylammoniums. ACS ORGANIC & INORGANIC AU 2024; 4:526-533. [PMID: 39371319 PMCID: PMC11450729 DOI: 10.1021/acsorginorgau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 10/08/2024]
Abstract
Bipyridines and azaarenes are an important class of ligands that impart unique and tunable properties to transition metal complexes and catalysts. While some derivatives are commercially available, noncommercial analogues are often challenging to prepare and purify. Herein, we report a general nucleophilic aromatic substitution reaction that converts cationic trimethylaminated bipyridines into a series of functionalized bipyridines. Our method showcases a series of C-O, C-S, and C-F bond-forming reactions as well as a selective monodemethylation that converts the electron-deficient trimethylammonium to an electron-rich dimethylamine. The approach was further applied to diversification of pharmaceuticals and natural products and was applied to the total synthesis of Graveolinine and the preparation of Graveolinine derivatives.
Collapse
Affiliation(s)
- Jenny
Y. Yang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| | - Ryan P. King
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| |
Collapse
|
3
|
Gobbo A, Pereira SAP, Mota FAR, Sinenko I, Glinkina K, Rocchi D, Guelfi M, Biver T, Donati C, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer potential of NSAID-derived tris(pyrazolyl)methane ligands in iron(II) sandwich complexes. Dalton Trans 2024. [PMID: 39072444 DOI: 10.1039/d4dt00920g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fátima A R Mota
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Irina Sinenko
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Kseniya Glinkina
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Dario Rocchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Massimo Guelfi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Chiara Donati
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
4
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
5
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
6
|
Pereira SAP, Baptista L AC, Biancalana L, Marchetti F, Dyson PJ, Saraiva MLMFS. Automated approach for the evaluation of glutathione-S-transferase P1-1 inhibition by organometallic anticancer compounds. J Enzyme Inhib Med Chem 2022; 37:1527-1536. [PMID: 35635138 PMCID: PMC9176637 DOI: 10.1080/14756366.2022.2073443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Sarah A. P. Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A. Catarina Baptista L
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Preclinical Therapeutic Assessment of a New Chemotherapeutics [Dichloro(4,4’-Bis(2,2,3,3-Tetrafluoropropoxy) Methyl)-2,2’-Bipryridine) Platinum] in an Orthotopic Patient-Derived Xenograft Model of Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:pharmaceutics14040839. [PMID: 35456673 PMCID: PMC9031226 DOI: 10.3390/pharmaceutics14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4’-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2’-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.
Collapse
|
8
|
Nolan VC, Rafols L, Harrison J, Soldevila-Barreda JJ, Crosatti M, Garton NJ, Wegrzyn M, Timms DL, Seaton CC, Sendron H, Azmanova M, Barry NP, Pitto-Barry A, Cox JA. Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100099. [PMID: 35059676 PMCID: PMC8760505 DOI: 10.1016/j.crmicr.2021.100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
A new family of indole-containing arene ruthenium organometallic compounds are active against several bacterial species and drug resistant strains Bactericidal activity observed against various Gram negative, Gram positive and acid-fast bacteria, demonstrating broad-spectrum inhibitory activity Compound series exhibits low toxicity against human cells Shows considerable promise as next generation antibiotics
Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.
Collapse
|
9
|
Gobbo A, Pereira SAP, Biancalana L, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer ruthenium( ii) tris(pyrazolyl)methane complexes with bioactive co-ligands. Dalton Trans 2022; 51:17050-17063. [DOI: 10.1039/d2dt03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New anticancer RuII-tpm complexes are presented, including a synthetic strategy to tether bioactive molecules to the metallic scaffold.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Sarah A. P. Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
10
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
11
|
Biancalana L, Kostrhunova H, Batchelor LK, Hadiji M, Degano I, Pampaloni G, Zacchini S, Dyson PJ, Brabec V, Marchetti F. Hetero-Bis-Conjugation of Bioactive Molecules to Half-Sandwich Ruthenium(II) and Iridium(III) Complexes Provides Synergic Effects in Cancer Cell Cytotoxicity. Inorg Chem 2021; 60:9529-9541. [PMID: 34156246 DOI: 10.1021/acs.inorgchem.1c00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ilaria Degano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
12
|
Pereira SAP, Bobbink FD, Dyson PJ, Saraiva MLMFS. Automatic evaluation of cyclooxygenase 2 inhibition induced by metal-based anticancer compounds. J Inorg Biochem 2021; 218:111399. [PMID: 33706122 DOI: 10.1016/j.jinorgbio.2021.111399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
An automatic methodology based on micro sequential injection analysis coupled to a lab-on-valve system (termed μSIA-LOV) was developed and used to determine the ability of metal-based anticancer compounds to inhibit cyclooxygenase 2 (COX-2) activity. COX-2 may be involved in pathogenesis of cancer and it is overexpressed in several types of solid tumors. Since platinum-based compounds are extensively used in the treatment of cancer, and ruthenium compounds are considered as promising candidates for next generation of non-targeted anticancer drugs, it is interesting to establish whether COX-2 inhibition is relevant to their mode of action. The μSIA-LOV system was optimized and the IC50 values of each compound were calculated. All the results present RSD values less than 2.5%. IC50 values of 9.7 ± 0.6 μM to 207 ± 3 μM were obtained, with the most active inhibitor for COX-2 being rofecoxib with the metal compounds exhibiting IC50 values in the range 13.7 ± 1.6 to 207 ± 3. The results obtained in this work provide significant information about the mechanism of the studied compounds, mostly ruthenium-based compounds, and the role of COX-2 in their mode of action. Moreover, this work confirmed the potential of the μSIA-LOV system as a simple, versatile, robust, and rapid analytical tool for automating the determination of IC50 values of metal-based compounds.
Collapse
Affiliation(s)
- Sarah A P Pereira
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Felix D Bobbink
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - M Lúcia M F S Saraiva
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|