1
|
Lee H, Dhamija A, Gunnam A, Hwang I, Kim K. Enhancing the Chemical Stability of P 12L 24 Cage: Transformation of the Chemically Labile Imine Cage into a Robust Carbamate Cage. Chemistry 2024:e202403936. [PMID: 39530447 DOI: 10.1002/chem.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Herein, we report enhancement in chemical stability of the imine-based porphyrinic cage P12L24 by converting it into a robust carbamate porphyrinic cage, c-P12L24, through a two-step post-synthetic modification process. First, the imine bonds in P12L24 were reduced to form an amine-based cage, r-P12L24, followed by carbamation using N,N'-carbonyldiimidazole (CDI) to yield c-P12L24. The resulting carbamate cage exhibits high stability under acidic and basic conditions (pH 1-13) and in the presence of moisture. 1H NMR, DOSY NMR, and DFT calculations revealed that reducing the imine bonds to amine increases the framework's flexibility, causing partial structural collapse, whereas the carbamate formation restores structural rigidity. The insertion of a 4.0 nm molecular ruler into the cavity of zinc-metallated c-P12L24 via metal-ligand coordination further confirmed restoration of the cavity size and geometry of the original cage. This enhancement of chemical stability through carbamate formation can pave the way to a wide range of potential applications for the gigantic porphyrinic cage.
Collapse
Affiliation(s)
- Hochan Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Anilkumar Gunnam
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ilha Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
2
|
Hicguet M, Mongin O, Leroux YR, Roisnel T, Berrée F, Trolez Y. Synthesis and Optoelectronic Properties of Threaded BODIPYs. ChemistryOpen 2024; 13:e202400196. [PMID: 39041684 DOI: 10.1002/open.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
We report on the synthesis of two new threaded BODIPYs 5 and 6 in good yields using boron as a gathering atom and a macrocycle with a 2,2'-biphenol unit. In addition to usual techniques, they were characterized by X-ray crystallography. Their electrochemical and optical properties were investigated. In particular, both compounds are highly emissive with photoluminescence quantum yields of 54 and 81 % respectively. In addition, they both show a high photostability.
Collapse
Affiliation(s)
- Matthieu Hicguet
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Olivier Mongin
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Yann R Leroux
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Thierry Roisnel
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Fabienne Berrée
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Yann Trolez
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| |
Collapse
|
3
|
Hicguet M, Verrieux L, Mongin O, Roisnel T, Berrée F, Fihey A, Le Guennic B, Trolez Y. Threading a Linear Molecule Through a Macrocycle Thanks to Boron: Optical Properties of the Threaded Species and Synthesis of a Rotaxane. Angew Chem Int Ed Engl 2024; 63:e202318297. [PMID: 38270341 DOI: 10.1002/anie.202318297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Two BODIPYs and two boron β-diketonates were threaded through a macrocycle bearing a 2,2'-biphenol unit, showing thus the ability of boron to act as a gathering atom. The new threaded species were characterized by 1D and 2D NMR spectroscopy as well as by X-ray crystallography for one of them and their properties rationalized with quantum chemistry to unravel the vibronic contributions. The BODIPYs exhibited interesting fluorescence features with quantum yields up to 91 % and enhanced photostability compared to their non-threaded homologues. A rotaxane was synthesized using this threading strategy after stoppering and removing the boron with potassium hydroxide.
Collapse
Affiliation(s)
- Matthieu Hicguet
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Ludmilla Verrieux
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Olivier Mongin
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Thierry Roisnel
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Fabienne Berrée
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Arnaud Fihey
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Yann Trolez
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| |
Collapse
|
4
|
Kirchner P, Schramm L, Ivanova S, Shoyama K, Würthner F, Beuerle F. A Water-Stable Boronate Ester Cage. J Am Chem Soc 2024; 146:5305-5315. [PMID: 38325811 PMCID: PMC10910528 DOI: 10.1021/jacs.3c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.
Collapse
Affiliation(s)
- Philipp
H. Kirchner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Louis Schramm
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Svetlana Ivanova
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Florian Beuerle
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
- Institut
für Organische Chemie, Eberhard Karls
Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
5
|
Ivanova S, Adamski P, Köster E, Schramm L, Fröhlich R, Beuerle F. Size Determination of Organic Cages by Diffusion NMR Spectroscopy. Chemistry 2023:e202303318. [PMID: 37966964 DOI: 10.1002/chem.202303318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Reliable structure elucidation of covalent organic cage compounds remains challenging as routine analysis might leave ambiguities. Diffusion-ordered NMR spectroscopy (DOSY) allows insight into the molecular size and mass of the species present in solution, but a systematic evaluation of the diffusion behavior for cage assemblies is rarely considered. Here we report the synthesis of four series of covalent organic cages based on tribenzotriquinacenes and diboronic acids with varying geometry and exohedral substituents. We provide a guideline for the consistent measurement of diffusion coefficients from 1 H-DOSY NMR spectroscopy, which was utilized to study the diffusion behavior for the whole set of cages and selected examples from the literature. For structurally similar cages, a linear correlation between the solvodynamic volume and the molecular mass allows precise size determination. For more complex systems, multiple parameters, such as window size or rigid exohedral functionalization. further modulate cage diffusion in solution.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Paul Adamski
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Louis Schramm
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Rebecca Fröhlich
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Wang YS, Li H, Bai S, Wang YY, Han YF. N-Heterocyclic carbene-stabilized platinum nanoparticles within a porphyrinic nanocage for selective photooxidation. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Chen J, Ma Z, Li Y, Cao S, Zhuang Q. Research Progress in Metal-Porous Organic Cage Nanocomposites. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
10
|
Bhandari P, Mondal B, Howlader P, Mukherjee PS. Face‐Directed Tetrahedral Organic Cage Anchored Palladium Nanoparticles for Selective Homocoupling Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Bijnaneswar Mondal
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
11
|
Gu MJ, Wang YF, Han Y, Chen CF. Recent advances on triptycene derivatives in supramolecular and materials chemistry. Org Biomol Chem 2021; 19:10047-10067. [PMID: 34751696 DOI: 10.1039/d1ob01818c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptycene derivatives, a type of specific aromatic compound, have been attracting much attention in many research areas. Over the past several years, triptycene and its derivatives have been described to be useful and efficient building blocks for the design and synthesis of novel supramolecular acceptors, porous materials and luminescent materials with specific structures and properties. In this review, recent researches on triptycene derivatives in supramolecular and materials chemistry are summarized. Especially, the construction of a new type of macrocyclic arenes and organic cages with triptycene and its derivatives as building blocks are focused on, and their applications in molecular recognition, self-assembly and gas selective sorption are highlighted. Moreover, the applications of triptycene and its derivatives in porous organic materials and thermally activated delayed fluorescence (TADF) materials are also discussed.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Bourguignon C, Schindler D, Zhou G, Rominger F, Mastalerz M. Cucurbitimines - imine cages with concave walls. Org Chem Front 2021; 8:3668-3674. [PMID: 34354838 PMCID: PMC8276630 DOI: 10.1039/d1qo00478f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
The variety of shape-persistent organic cages by imine bond formation has tremendously enlarged in recent years by using different building blocks (aldehydes and amines) in the condensation reactions. Here, we describe the use of a kinked tetraldehyde to generate pumpkin-shaped cages with concave walls, similar to cucurbiturils. Kinked tetraaldehyde building blocks lead in condensation reactions with diamines to pumpkin shaped cages – the cucurbitimines.![]()
Collapse
Affiliation(s)
- Christine Bourguignon
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Dorothee Schindler
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Gangxiang Zhou
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
14
|
The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO2 Transformation. Catalysts 2021. [DOI: 10.3390/catal11030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porous organic cages (POC) are a class of relatively new molecular porous materials, whose concept was raised in 2009 by Cooper’s group and has rarely been directly used in the area of organic catalysis. In this contribution, a novel ionic quasi-porous organic cage (denoted as Iq-POC), a quaternary phosphonium salt, was easily synthesized through dynamic covalent chemistry and a subsequent nucleophilic addition reaction. Iq-POC was applied as an effective nucleophilic catalyst for the cycloaddition reaction of CO2 and epoxides. Owing to the combined effect of the relatively large molecular weight (compared with PPh3+I−) and the strong polarity of Iq-POC, the molecular catalyst Iq-POC displayed favorable heterogeneous nature (i.e., insolubility) in this catalytic system. Therefore, the Iq-POC catalyst could be easily separated and recycled by simple centrifugation method, and the catalyst could be reused five times without obvious loss of activity. The molecular weight augmentation route in this study (from PPh3+I− to Iq-POC) provided us a “cage strategy” of designing separable and recyclable molecular catalysts.
Collapse
|
15
|
Hähsler M, Mastalerz M. A Giant [8+12] Boronic Ester Cage with 48 Terminal Alkene Units in the Periphery for Postsynthetic Alkene Metathesis. Chemistry 2021; 27:233-237. [PMID: 32840913 PMCID: PMC7839526 DOI: 10.1002/chem.202003675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Dynamic covalent chemistry (DCC) is a powerful synthetic tool to construct large defined molecules in one step from rather simple precursors. The advantage of the intrinsic dynamics of the applied reversible reaction steps is a self‐correction under the chosen conditions, to achieve high yields of the target compound. To date, only a few examples are known, in which DCC was used to build up a molecular defined but larger product that was chemically transferred to a more stable congener in a second (irreversible) step. Here, we present a nanometer‐sized [8+12] boronic ester cage containing 48 peripheral terminal alkene units which allows to put a hydrocarbon exoskeleton around the cage via alkene metathesis.
Collapse
Affiliation(s)
- Martin Hähsler
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|