1
|
Trotta C, Langellotti V, Manco I, Rodriguez GM, Rocchigiani L, Zuccaccia C, Ruffo F, Macchioni A. Boosting Effect of Sterically Protected Glucosyl Substituents in Formic Acid Dehydrogenation by Iridium(III) 2-Pyridineamidate Catalysts. CHEMSUSCHEM 2024; 17:e202400612. [PMID: 38747321 DOI: 10.1002/cssc.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Indexed: 10/22/2024]
Abstract
[Cp*Ir(R-pica)Cl] (Cp*=pentamethylcyclopentadienyl anion, pica=2-picolineamidate) complexes bearing carbohydrate substituents on the amide nitrogen atom (R=methyl-β-D-gluco-pyranosid-2-yl, 1; methyl-3,4,6-tri-O-acetyl-β-D-glucopyranosid-2-yl, 2) were tested as catalysts for formic acid dehydrogenation in water. TOFMAX values over 12000 h-1 and 50000 h-1 were achieved at 333 K for 1 and 2, respectively, with TON values over 35000 for both catalysts. Comparison with the simpler cyclohexyl-substituted analogue (3) indicated that glucosyl-based complexes are much better performing under the same experimental conditions (TOFMAX=5144 h-1, TON=5000 at pH 2.5 for 3) owing to a lower tendency to isomerize to the less active k2-N,O isomer upon protonation. The 5-fold increase in TOFMAX observed for 2 with respect to 1 is reasonably due to an optimal steric protection by the acetyl substituent, which may prevent unproductive inner-sphere reactivity. These results showcase a powerful strategy for the inhibition of the common deactivation pathways of [Cp*Ir(R-pica)X] catalysts for FA dehydrogenation, paving the way for the development of better performing hydrogen storage systems.
Collapse
Affiliation(s)
- Caterina Trotta
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Vincenzo Langellotti
- Department of Chemical Sciences and CIRCC, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Immacolata Manco
- Department of Chemical Sciences and CIRCC, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Francesco Ruffo
- Department of Chemical Sciences and CIRCC, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
2
|
Ge S, Gong L, Yi P, Mo X, Liu C, Yi XY, He P. N-Site Regulation of Pyridyltriazole in Cp*Ir(N̂N)(H 2O) Complexes Achieving Catalytic FA Dehydrogenation. Inorg Chem 2023; 62:18375-18383. [PMID: 37910633 DOI: 10.1021/acs.inorgchem.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A series of novel Cp*Ir complexes with nitrogen-rich N̂N bidentate ligands were developed for the catalytic dehydrogenation of formic acid in water under base-free conditions. These complexes were synthesized by using pyridyl 1,2,4-triazole, methylated species, or pyridyl 1,2,3-triazole as a N-site regulation ligand and were fully characterized. Complex 1-H2O bearing 1,2,4-triazole achieved a high turnover frequency of 14192 h-1 at 90 °C in 4 M FA aqueous solution. The terminal and bridged Ir-H intermediates of 1-H2O were successfully detected by 1H NMR and mass spectrometry measurements. Kinetic isotope effect experiments and density functional theory (DFT) calculations were performed; then a plausible mechanism was proposed involving the β-hydride elimination and formation of H2. Water-assisted H2 release was proven to be the rate-determining step of the reaction. The distribution of Mulliken charges on N atoms of triazole ligand internally revealed that the ortho site N2 of 1-H2O with a higher electron density was conducive to efficient proton transfer. Additionally, the advantage of water-assisted short-range bridge of 1,2,4-triazole moieties led to a higher catalytic activity of 1-H2O. This study demonstrated the effectiveness of nitrogen-rich ligands on FA dehydrogenation and revealed a good strategy for N site regulation in the development of new homogeneous catalysts.
Collapse
Affiliation(s)
- Shun Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lishan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Pingping Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiufang Mo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
3
|
Zhao LJ, Zhang C, Zhang S, Lv X, Chen J, Sun X, Su H, Murayama T, Qi C. High Selectivity Cofactor NADH Regeneration Organic Iridium Complexes Used for High-Efficiency Chem-Enzyme Cascade Catalytic Hydrogen Transfer. Inorg Chem 2023; 62:17577-17582. [PMID: 37843583 DOI: 10.1021/acs.inorgchem.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Our research demonstrated that novel pentamethylcyclopentadienyl (Cp*) iridium pyridine sulfonamide complex PySO2NPh-Ir (7) could highly specifically catalyze nicotinamide adenine dinucleotide (NAD+) into the corresponding reducing cofactor NADH in cell growth media containing various biomolecules. The structures and catalytic mechanism of 7 were studied by single-crystal X-ray, NMR, electrochemical, and kinetic methods, and the formation of iridium hydride species Ir-H was confirmed to be the plausible hydride-transfer intermediate of 7. Moreover, benefiting from its high hydrogen-transfer activity and selectivity for NADH regeneration, 7 was used as an optimal metal catalyst to establish a chem-enzyme cascade catalytic hydrogen-transfer system, which realized the high-efficiency preparation of l-glutamic acid by combining with l-glutamate dehydrogenase (GLDH).
Collapse
Affiliation(s)
- Li-Jun Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Caimei Zhang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shixin Zhang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyi Lv
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiayang Chen
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Toru Murayama
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Caixia Qi
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Gomez-España A, Lopez-Morales JL, Español-Sanchez B, García-Orduña P, Lahoz FJ, Iglesias M, Fernández-Alvarez FJ. Iridium-(κ 2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance. Dalton Trans 2023; 52:6722-6729. [PMID: 37129044 DOI: 10.1039/d3dt00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The iridium(III) complexes [Ir(H)(Cl)(κ2-NSitBu2)(κ2-bipyMe2)] (2) and [Ir(H)(OTf)(κ2-NSitBu2)(κ2-bipyMe2)] (3) (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl) have been synthesized and characterized including X-ray studies of 3. A comparative study of the catalytic activity of complexes 2, 3, [Ir(H)(OTf)(κ2-NSitBu2)(coe)] (4), and [Ir(H)(OTf)(κ2-NSitBu2)(PCy3)] (5) (0.1 mol%) as catalysts precursors for the solventless formic acid dehydrogenation (FADH) in the presence of Et3N (40 mol%) at 353 K has been performed. The highest activity (TOF5 min ≈ 3260 h-1) has been obtained with 3 at 373 K. However, at that temperature the FTIR spectra show traces of CO together with the desired products (H2 and CO2). Thus, the best performance was achieved at 353 K (TOF5 min ≈ 1210 h-1 and no observable CO). Kinetic studies at variable temperature show that the activation energy of the 3-catalyzed FADH process is 16.76 kcal mol-1. Kinetic isotopic effect (5 min) values of 1.6, 4.5, and 4.2 were obtained for the 3-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, at 353 K. The strong KIE found for DCOOH and DCOOD evidenced that the hydride transfer from the C-H bond of formic acid to the metal is the rate-determining step of the process.
Collapse
Affiliation(s)
- Alejandra Gomez-España
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
- Universidad Pedagógica Nacional Francisco Morazán-UPNFM, 11101, Tegucigalpa, Honduras
| | - Jorge L Lopez-Morales
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Belinda Español-Sanchez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Pilar García-Orduña
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Fernando J Lahoz
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Manuel Iglesias
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Francisco J Fernández-Alvarez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| |
Collapse
|
5
|
Wang WH, Shao WY, Sang JY, Li X, Yu X, Yamamoto Y, Bao M. N,N-Dialkylation of Acyl Hydrazides with Alcohols Catalyzed by Amidato Iridium Complexes via Borrowing Hydrogen. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Wan-Hui Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Wei-Yu Shao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Jia-Yue Sang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xu Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Ming Bao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
6
|
Guo J, Li M, Yin C, Li X, Wang Y, Yuan J, Qi T. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation. Dalton Trans 2023; 52:4856-4861. [PMID: 36939828 DOI: 10.1039/d2dt04079d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
New Ir complexes bearing N-(methylsulfonyl)-2-pyridinecarboxamide (C1) and N-(phenylsulfonyl)-2-pyridinecarboxamide (C2) were employed as catalysts for aqueous formic acid dehydrogenation (FADH). The ligands were designed to maintain the picolinamide skeleton and introduce strong sigma sulfonamide moieties. C1 and C2 exhibited good stability towards air and concentrated formic acid (FA). During 20 continuous cycles, C1 and C2 could achieve the complete conversion of FA with TONs of 172 916 and 172 187, respectively. C1 achieved a high TOF of 19 500 h-1 at 90 °C and an air-stable Ir-H species was observed by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Guo
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Maoliang Li
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Chengkai Yin
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Yilin Wang
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Jingcheng Yuan
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| |
Collapse
|
7
|
Tensi L, Dall’Anese A, Annunziata A, Mearini S, Nofrini V, Menendez Rodriguez G, Carotti A, Sardella R, Ruffo F, Macchioni A. Synthesis and Characterization of Chiral Iridium Complexes Bearing Carbohydrate Functionalized Pyridincarboxamide Ligands and Their Application as Catalysts in the Asymmetric Transfer Hydrogenation of α-Ketoacids in Water. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Anna Dall’Anese
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alfonso Annunziata
- Department of Chemical Sciences and CIRCC, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France
| | - Simone Mearini
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Vittorio Nofrini
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Francesco Ruffo
- Department of Chemical Sciences and CIRCC, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
8
|
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO 2/HCO 2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
9
|
Tensi L, Yakimov AV, Trotta C, Domestici C, De Jesus Silva J, Docherty SR, Zuccaccia C, Copéret C, Macchioni A. Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO 2 and the Dehydrogenation of Formic Acid. Inorg Chem 2022; 61:10575-10586. [PMID: 35766898 PMCID: PMC9348825 DOI: 10.1021/acs.inorgchem.2c01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The development of
an efficient heterogeneous catalyst for storing
H2 into CO2 and releasing it from the produced
formic acid, when needed, is a crucial target for overcoming some
intrinsic criticalities of green hydrogen exploitation, such as high
flammability, low density, and handling. Herein, we report an efficient
heterogeneous catalyst for both reactions prepared by immobilizing
a molecular iridium organometallic catalyst onto a high-surface mesoporous
silica, through a sol–gel methodology. The presence of tailored
single-metal catalytic sites, derived by a suitable choice of ligands
with desired steric and electronic characteristics, in combination
with optimized support features, makes the immobilized catalyst highly
active. Furthermore, the information derived from multinuclear DNP-enhanced
NMR spectroscopy, elemental analysis, and Ir L3-edge XAS
indicates the formation of cationic iridium sites. It is quite remarkable
to note that the immobilized catalyst shows essentially the same catalytic
activity as its molecular analogue in the hydrogenation of CO2. In the reverse reaction of HCOOH dehydrogenation, it is
approximately twice less active but has no induction period. We report the synthesis of a heterogeneous
immobilized catalyst
(Ir_PicaSi_SiO2) and its successful
application in aqueous CO2 hydrogenation and FA dehydrogenation.
The information derived from multinuclear DNP-enhanced NMR spectroscopy,
elemental analysis, and XAS indicates the presence of cationic iridium
sites in Ir_PicaSi_SiO2. The
latter shows essentially the same catalytic activity as its molecular
analogue in the hydrogenation of CO2. In the reverse reaction
of HCOOH dehydrogenation, it is approximately twice less active but
has no induction period.
Collapse
Affiliation(s)
- Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology and CIRCC, Università degli Studi di Perugia, Perugia 06123, Italy.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Caterina Trotta
- Department of Chemistry, Biology and Biotechnology and CIRCC, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Chiara Domestici
- Department of Chemistry, Biology and Biotechnology and CIRCC, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology and CIRCC, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, Università degli Studi di Perugia, Perugia 06123, Italy
| |
Collapse
|
10
|
Sorbelli D, Belanzoni P, Belpassi L, Lee J, Ciancaleoni G. An ETS-NOCV-based computational strategies for the characterization of concerted transition states involving CO 2. J Comput Chem 2022; 43:717-727. [PMID: 35194805 PMCID: PMC9303928 DOI: 10.1002/jcc.26829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Due to the presence of both a slightly acidic carbon and a slightly basic oxygen, carbon dioxide is often involved in concerted transition states (TSs) with two (or more) different molecular events interlaced in the same step. The possibility of isolating and quantitatively evaluating each molecular event would be important to characterize and understand the reaction mechanism in depth. This could be done, in principle, by measuring the relevant distances in the optimized TS, but often distances are not accurate enough, especially in the presence of many simultaneous processes. Here, we have applied the Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), also in combination with the Activation Strain Model (ASM) and Energy Decomposition Analysis (EDA), to separate and quantify these molecular events at the TS of both organometallic and organic reactions. For the former, we chose the decomposition of formic acid to CO2 by an iridium catalyst, and for the latter, a CO2 -mediated transamidation and its chemical variations (hydro- and aminolysis of an ester) as case studies. We demonstrate that the one-to-one mapping between the "molecular events" and the ETS-NOCV components is maintained along the entire lowest energy path connecting reactants and products around the TS, thus enabling a detailed picture on the relative importance of each interacting component. The methodology proposed here provides valuable insights into the effect of different chemical substituents on the reaction mechanism and promises to be generally applicable for any concerted TSs.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Ji‐Woong Lee
- Department of ChemistryUniversity of CopenhagenCopenhagenØ 2100Denmark
- Nanoscience CenterUniversity of CopenhagenCopenhagenØ 2100Denmark
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisaI‐56124Italy
- CIRCCBariItaly
| |
Collapse
|
11
|
Guzman J, Urriolabeitia A, Polo V, Fernández Buenestado M, Iglesias M, Fernandez-Alvarez FJ. Dehydrogenation of Formic Acid Using Iridium-NSi Species as Catalyst Precursors. Dalton Trans 2022; 51:4386-4393. [DOI: 10.1039/d1dt04335h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a low loading of the iridium(III) complexes [Ir(CF3SO3)(κ2-NSiiPr)2] (1) (NSiiPr = (4-methylpyridin-2-iloxy)diisopropylsilyl and [{Ir(κ2-NSiMe)2}2(µ-CF3SO3)2] (2) (NSiMe = (4-methylpyridin-2-iloxy)dimethylsilyl) in presence of Et3N, it has been possible to achieve the...
Collapse
|
12
|
Rodriguez GM, Zaccaria F, Van Dijk S, Zuccaccia C, Macchioni A. Substituent Effects on the Activity of Cp*Ir(pyridine-carboxylate) Water Oxidation Catalysts: Which Ligand Fragments Remain Coordinated to the Active Ir Centers? Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabriel Menendez Rodriguez
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università; Degli Studi di Perugia, Via Elceo di Sotto 8, 06123 Perugia, Italy
| | - Francesco Zaccaria
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università; Degli Studi di Perugia, Via Elceo di Sotto 8, 06123 Perugia, Italy
| | - Sybren Van Dijk
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università; Degli Studi di Perugia, Via Elceo di Sotto 8, 06123 Perugia, Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università; Degli Studi di Perugia, Via Elceo di Sotto 8, 06123 Perugia, Italy
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università; Degli Studi di Perugia, Via Elceo di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|