1
|
Nielinger L, Alker K, Hiller W, Urner LH. Diffusion Coefficient Analysis by Dynamic Light Scattering Enables Determination of Critical Micelle Concentration. Chempluschem 2024:e202400645. [PMID: 39661015 DOI: 10.1002/cplu.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The critical micelle concentration is an important property of supramolecular detergents. Two dynamic light scattering approaches have been developed for critical micelle concentration analysis, i. e., concentration-dependent light scattering intensity analysis and diffusion coefficient analysis. Their utility as complementary tools for a reproducible determination of critical micelle concentration remains to be clarified. Herein, we address the question which of the two approaches is more suitable for obtaining reproducible critical micelle concentration values. We systematically compare both approaches in context with common detergent classes and benchmark utility by means of literature values. Our results show that the diffusion coefficient analysis delivers reproducible critical micelle concentration values in aqueous solutions. Our findings outline a roadmap to guide the critical micelle concentration analysis of detergents by dynamic light scattering in the future.
Collapse
Affiliation(s)
- Lena Nielinger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4-6, 44227, Dortmund, Germany
| | - Katharina Alker
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4-6, 44227, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4-6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4-6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Wycisk V, Behnke JS, Nielinger L, Seewald M, Weisner J, Binsch M, Wagner MC, Raisch T, Urner LH. Synthesis of Asymmetric Ionic Hybrid Detergents enables Micelles with Scalable Properties including Cell Compatibility. Chemistry 2024:e202401833. [PMID: 38819585 DOI: 10.1002/chem.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Ionic detergents enable applications and cause harm in biospheres due to cell toxicity. The utility of covalent combinations between ionic and non-ionic detergent headgroups in modulating cell toxicity remains speculative due to the yet rarely explored synthesis. We close this gap and establish the modular synthesis of ionic/non-ionic hybrid detergents. We restructure a combinatorial methallyl dichloride one-pot coupling into a two-step coupling, which reduces by-products, improves product yields, and enables the gram-scale preparation of asymmetric, cationic/non-ionic and anionic/non-ionic hybrid detergents. Our modular synthesis delivers new modalities for the design of ionic detergents, including an unprecedented scaling of properties that determine applications, such as charge, critical micelle concentration, solubilizing properties, hard water tolerance, and cell compatibility. We uncover that shielding the charge in ionic headgroups can switch the detergent species that is toxic to cells from monomers to mixtures of monomers and micellar assemblies. Establishing the chemistry of ionic/non-ionic hybrid detergents provides a missing evolutionary link in the structural comparison of ionic and non-ionic detergents, enables an easy synthesis access to yet unexplored chemical spaces of asymmetric hybrid materials, and delivers new modalities for designing the toxicity of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jan-Simon Behnke
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Lena Nielinger
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc Seewald
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jörn Weisner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Markus Binsch
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Tobias Raisch
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227, Dortmund
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| |
Collapse
|
3
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Wycisk V, Urner LH. Protocol to test the utility of detergents for E. coli membrane protein extraction and delipidation. STAR Protoc 2023; 4:102146. [PMID: 36934326 PMCID: PMC10034499 DOI: 10.1016/j.xpro.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
We present a protocol to evaluate the utility of detergents for purification and delipidation of E. coli membrane proteins. We determine the critical aggregation concentration of detergents. Furthermore, we compare the ability of detergents to extract membrane proteins and to maintain protein-lipid interactions during purification. The protocol describes steps for isolating and delipidating membrane proteins from E. coli membranes by extraction and affinity purification using detergents. The protocol does not enable an absolute quantification of purification outcomes. For complete details on the use and execution of this protocol, please refer to Urner et al.1.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany.
| |
Collapse
|
5
|
Emergence of mass spectrometry detergents for membrane proteomics. Anal Bioanal Chem 2023:10.1007/s00216-023-04584-z. [PMID: 36808272 PMCID: PMC10328889 DOI: 10.1007/s00216-023-04584-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
Detergents enable the investigation of membrane proteins by mass spectrometry. Detergent designers aim to improve underlying methodologies and are confronted with the challenge to design detergents with optimal solution and gas-phase properties. Herein, we review literature related to the optimization of detergent chemistry and handling and identify an emerging research direction: the optimization of mass spectrometry detergents for individual applications in mass spectrometry-based membrane proteomics. We provide an overview about qualitative design aspects including their relevance for the optimization of detergents in bottom-up proteomics, top-down proteomics, native mass spectrometry, and Nativeomics. In addition to established design aspects, such as charge, concentration, degradability, detergent removal, and detergent exchange, it becomes apparent that detergent heterogeneity is a promising key driver for innovation. We anticipate that rationalizing the role of detergent structures in membrane proteomics will serve as an enabling step for the analysis of challenging biological systems.
Collapse
|
6
|
Urner LH, Ariamajd A, Weikum A. Combinatorial synthesis enables scalable designer detergents for membrane protein studies. Chem Sci 2022; 13:10299-10307. [PMID: 36277644 PMCID: PMC9473536 DOI: 10.1039/d2sc03130b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Non-ionic detergents with tailor-made properties are indispensable tools for today's world applications, such as cleaning, disinfection, and drug discovery. To facilitate their challenging production, herein we introduce a new detergent class, namely scalable hybrid detergents. We report a combinatorial synthesis strategy that allows us to fuse head groups of different detergents into hybrid detergents with unbeatable ease. Importantly, combinatorial synthesis also enables the choice between (i) high-throughput preparation of detergents for small scale applications and (ii) large scale preparation of individual detergents. This combinatorial synthesis strategy enables an unprecedented fine tuning of detergent properties, such as overall polarity and shape, which are determining factors in applications, such as membrane protein research. Our data show that membrane protein purification parameters, such as protein yields and activity, can be linked to overall polarity and shape. Conveniently, both parameters can be theoretically described by means of the hydrophilic-lipophilic balance (HLB) and packing parameter concepts. Both concepts are principally applicable to all non-ionic detergent classes, which facilitates the identification of widely applicable design guidelines for the predictable optimization of non-ionic detergents. Our findings permit access to a yet unexplored chemical space of the detergentome, therefore creating new possibilities for structure-property relationship studies. Seen from a broader perspective, combinatorial synthesis will facilitate the preparation of designer detergents with tailor-made properties for future applications in today's world.
Collapse
Affiliation(s)
- Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Armin Ariamajd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry Takustraße 3 14195 Berlin Germany
| | - Alex Weikum
- Freie Universität Berlin, Institute of Chemistry and Biochemistry Takustraße 3 14195 Berlin Germany
| |
Collapse
|
7
|
Urner LH, Liko I, Pagel K, Haag R, Robinson CV. Non-ionic hybrid detergents for protein delipidation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183958. [PMID: 35551920 DOI: 10.1016/j.bbamem.2022.183958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023]
Abstract
Non-ionic detergents are important tools for the investigation of interactions between membrane proteins and lipid membranes. Recent studies led to the question as to whether the ability to capture protein-lipid interactions depends on the properties of detergents or their concentration in purification buffers. To address this question, we present the synthesis of an asymmetric, hybrid detergent that combines the head groups of detergents with opposing delipidating properties. We discuss detergent properties and protein purification outcomes to reveal whether the properties of detergent micelles or the detergent concentration in purification buffers drive membrane protein delipidation. We anticipate that our findings will enable the development of rationally design detergents for future applications in membrane protein research.
Collapse
Affiliation(s)
- Leonhard H Urner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany; University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX13QZ, United Kingdom; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany.
| | - Idlir Liko
- University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX13QZ, United Kingdom
| | - Kevin Pagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Carol V Robinson
- University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX13QZ, United Kingdom
| |
Collapse
|
8
|
Advances in membrane mimetics and mass spectrometry for understanding membrane structure and function. Curr Opin Chem Biol 2022; 69:102157. [DOI: 10.1016/j.cbpa.2022.102157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
9
|
Abstract
Detergents are crucially needed for the purification of drug targets: membrane proteins. Here, a method is described that combines tunable detergent technology and established laboratory techniques to tailor the affinity purification and structural analysis of membrane proteins.
Collapse
Affiliation(s)
- Leonhard H Urner
- Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
10
|
Apartsin E, Caminade A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chemistry 2021; 27:17976-17998. [PMID: 34713506 PMCID: PMC9298340 DOI: 10.1002/chem.202102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
This review presents precisely defined amphiphilic dendrons, their self-association properties, and their different uses. Dendrons, also named dendritic wedges, are composed of a core having two different types of functions, of which one type is used for growing or grafting branched arms, generally multiplied by 2 at each layer by using 1→2 branching motifs. A large diversity of structures has been already synthesized. In practically all cases, their synthesis is based on the synthesis of known dendrimers, such as poly(aryl ether), poly(amidoamine) (in particular PAMAM), poly(amide) (in particular poly(L-lysine)), 1→3 branching motifs (instead of 1→2), poly(alkyl ether) (poly(glycerol) and poly(ethylene glycol)), poly(ester), and those containing main group elements (poly(carbosilane) and poly(phosphorhydrazone)). In most cases, the hydrophilic functions are on the surface of the dendrons, whereas one or two hydrophobic tails are linked to the core. Depending on the structure of the dendrons, and on the experimental conditions used, the amphiphilic dendrons can self-associate at the air-water interface, or form micelles (eventually tubular, but most generally spherical), or form vesicles. These associated dendrons are suitable for the encapsulation of low-molecular or macromolecular bioactive entities to be delivered in cells. This review is organized depending on the nature of the internal structure of the amphiphilic dendrons (aryl ether, amidoamine, amide, quaternary carbon atom, alkyl ether, ester, main group element). The properties issued from their self-associations are described all along the review.
Collapse
Affiliation(s)
- Evgeny Apartsin
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
- Institute of Chemical Biology and Fundamental Medicine630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
| |
Collapse
|